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Abstract— In this paper, to exploit the challenges and potential
offered by the simultaneous use of non-orthogonal multiple
access (NOMA) and orthogonal frequency division multiple
access (OFDMA) transmission options in future 5G wireless
systems, we aim at the proper modeling and transformation of the
uplink power allocation problem. In particular, in this setting,
each user has two degrees of freedom in the decision making
process, namely its overall transmission power level, and the
corresponding power investment to the OFDMA and/or NOMA
based transmissions. The resulting multi-variable power alloca-
tion problem is treated and solved under three different perspec-
tives, namely: 1) Games in Normal Form and Nash Equilibrium
(NE); 2) Optimization techniques targeting system social welfare
through a centralized optimal solution; and 3) Games in Satisfac-
tion Form and Efficient Satisfaction Equilibrium (ESE). Based on
these approaches, different solutions and stable operation points
are identified and their properties are analyzed. An in depth
evaluation and comparison of the various obtained outcomes is
achieved, via modeling and simulations. The focus is placed on
the impact and the interplay of the NOMA specific features,
including the potential over-exploitation of the available band-
width, the fairness in accessing it, and the interference treatment.
It is also shown that, using the satisfaction form games for the
users to converge to the ESE, provides an efficient and promising
user-centric modeling approach to the power allocation problem,
as the system adapts to the users’ application needs, while at the
same time eliminates a significant amount of interference.

Index Terms— Resource optimization, dual multiple access
technology, 5G systems, game theory, satisfaction equilibrium.

I. INTRODUCTION

MOBILE data traffic and the number of connected
devices are growing at an unprecedented pace, with
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this trend expected to further intensify via the deploy-
ment of 5G and beyond networks [1]. However, the desire
to fully realize the capabilities of 5G technologies and
features, while accounting for spectrum scarcity and effi-
ciency, creates the pressing need to examine the potential
of 5G ready radio access technologies in optimizing resource
allocation.

In that respect, non-orthogonal multiple access (NOMA)
is one of the most promising radio access techniques in
next-generation wireless communications, offering a set of
desirable potential benefits, such as enhanced spectrum effi-
ciency, reduced latency, resource usage fairness, and massive
connectivity [2]. The fundamental idea of NOMA is the
multi-user spectrum sharing within a resource block through
power-domain multiplexing, capitalizing on the exploitation
of channel gain difference among users. By allowing multiple
users to be superimposed on the same resource NOMA,
on the one hand prevents the underutilization of system
bandwidth, while on the other hand leads to interference for
such systems [3], [4]. Advanced physical layer and multi-user
detection techniques, such as Successive Interference Cancel-
lation (SIC), are then, applied at the receiver to decode the
received superimposed signal and deal with the interference
problem [5].

However, since the principle of NOMA allows multiple
users to be superimposed on the same resource, this leads
to interference for such systems. On the other hand, orthog-
onal frequency division multiple access (OFDMA) assigns to
the individual users different subcarriers which are orthog-
onal to each other [6]. Accordingly, the key benefits of
OFDMA include multi-user diversity gains and elimination of
intra-cell interference, thus leading to lower complexity and
more predictable performance. Consequently, while variations
of NOMA are receiving increasing attention recently [7],
OFDMA is still expected to remain an integral part of the
forthcoming 5G networks [8]. A more thorough presentation
of the differences of the OFDMA versus the NOMA technique
can be found in [9].

With the emergence of smart devices with dual transmis-
sion access capabilities being reality [10], spectrum sharing
techniques can also become available under different access
technologies simultaneously. An interesting paradigm involves
users dynamically adjusting their transmission between (a) the
interference free but limited in terms of throughput OFDMA,
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and (b) NOMA, where the entire available spectrum can be
exploited, however it has to be shared with the rest of users.

Within this emerging setting, in this paper, we aim to lay
the foundations for the design of a solid theoretical resource
allocation framework based on the principles of game theory
and the novel concept of satisfaction games. Each user has two
degrees of freedom in the decision making process, namely its
overall transmission power level, and the corresponding power
investment (split) to the OFDMA and NOMA based transmis-
sions. In this paper, three different types of resource allocation
formulations are examined, reflecting different perspectives
and objectives, while concluding to different stable operation
points. Namely, we analyze and compare: (i) Distributed
resource allocation, where the users act as utility maximizers;
(ii) Centralized resource allocation aiming at maximizing the
overall system’s social welfare, expressed as the summation
of all user individual utilities, and (iii) Satisfaction-aware
resource allocation towards satisfying the users’ minimum
Quality of Service (QoS) prerequisites. The latter targets the
objective of improving user energy awareness and efficiency,
while increasing system capacity in terms of satisfied users.

A. Related Work & Motivation

Several efforts have been performed in the recent literature
to deal with the uplink power control problem in NOMA-based
5G networks. In [11], a power control problem is formulated
as a non-cooperative game among the users of a heteroge-
neous network, consisting of macro-cell and femtocell users,
aiming at the maximization of their energy efficiency. The
non-cooperative game is solved in a centralized manner by
using convex optimization techniques to determine the unique
Nash Equilibrium (NE). In [12], an uplink power control
mechanism in NOMA networks is introduced, while simul-
taneously controlling the number of users that share the same
bandwidth’s subchannel in order to reduce the complexity of
multi-user detection at the receiver. A different approach is
followed in [13], where the authors formulate a multi-variable
non-cooperative game among the users, who aim to determine
their optimal transmission data rate and customized price. The
problem is solved based on the theory of S-modular games and
a NE point is obtained, that allows each user to determine its
optimal transmission power. The power control problem over
NOMA-based licensed and unlicensed bands is studied in [14],
[15]. In that line of work each user, assuming fixed transmis-
sion power, determines only the power investment (portion) to
the licensed and unlicensed band-based communication, while
capturing the users’ behavioral characteristics and preferences
through the adoption of Prospect Theory.

Considering the availability of both NOMA and orthogonal
multiple access (OMA) schemes (such as OFDMA [16]),
in [10] a centralized power control problem is formulated,
aiming at maximizing the system’s sum rate and solved via
the successive convex approximation technique, to determine
each user’s transmission scheme (either NOMA or OMA), and
corresponding transmission power. In this preliminary research
work however, the problem is studied under the assumption
of exclusive use of either NOMA or OMA technique, without
enabling the users to jointly exploit the benefits of both tech-

niques. The latter limitation and issue is treated in [17], where
the problem of resource allocation within the flexible dual
access technology paradigm is studied, under the framework
of Common Pool Resource (CPR) games and Prospect Theory.
Despite the promising results obtained in this research work
in terms of spectrum efficiency utilization, it is assumed that
each user transmits with a fixed overall transmission power
and can only control its power investment (split) to the NOMA
and OFDMA transmission. However, this assumption reduces
the solution’s flexibility in terms of controlling overall power
consumption, thus limiting its applicability and effectiveness.

The synergy between the resource allocation problem in
wireless networks, and in particular power control, and game
theory is well established in the literature [18]–[22]. Never-
theless, in the overwhelming majority of the existing in the
literature power control approaches, the users act as utility
maximizers aiming at maximizing their perceived satisfac-
tion from the resource allocation process in a selfish and
greedy manner. Therefore, for spectrum and energy efficiency
mainly considerations, the framework of games in satisfaction
form [23], is gaining great attention in the recent literature
towards addressing the problem of resource allocation in 5G
networks [24]. Under this perspective, the users participate in
the resource allocation process and determine the most cost
efficient strategies in order to satisfy their minimum QoS
prerequisites, rather than maximizing some objective func-
tion. In [25], a learning iterative mechanism is introduced to
determine the Satisfaction Equilibrium (SE), that is, to deter-
mine the users’ transmission powers at the point where their
minimum prerequisites are fulfilled. A theoretical analysis of
various equilibrium points of the games in satisfaction form is
provided in [26], studying the efficiency of the uplink power
control problem in 5G networks, both from the users’ and the
system’s perspective.

B. Contributions and Outline

To the best of our knowledge, our work is the first one
in the literature that aims at removing the aforementioned
assumptions and treating the emerging challenges. In par-
ticular, it aims at transforming the holistic uplink power
control problem, in order to consider different perspectives
and transmission options in the user decision making process,
under the reality of the dual access technology paradigm in
future wireless networks, capitalizing on the potential simul-
taneous use of OFDMA and NOMA transmission options.
Considering a user utility function based on the Shannon
capacity formula, each user aims at simultaneously selecting
its optimal transmission power and respective splitting fac-
tor (i.e., investment of its transmission power between the
OFDMA and the NOMA), given certain objectives, constraints
and the state of the network, as reflected by the strategies of
the other users and the adopted pricing schemes. We refer
to this joint decision making problem as power allocation
problem. This multi-variable problem is investigated from
three different perspectives, motivating and calling for the
following treatments: (i) Games in Normal Form and NE,
(ii) Optimization techniques targeting system social welfare
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through a centralized optimal solution, and (iii) Games in Sat-
isfaction Form and Efficient Satisfaction Equilibrium (ESE).

In particular, initially considering users acting as utility
maximizers and thus reflecting an egoistic behavior, we model
the aforementioned setting as a game in normal form and we
prove that the Best Response Dynamics (BRD) converges to
the NE of the game. We further introduce a linear - with
respect to the user power investment - cost function in each
user’s utility, which can ameliorate the aforementioned selfish
behavior and make the system more efficient. In this manner,
a more socially desirable output is obtained. Furthermore,
a distributed algorithm is provided that efficiently solves the
maximization problem of finding a user’s Best Response (BR),
by testing the prospective local optima. A sufficient condition
that guarantees that a user’s BR does not lie at its maximum
transmission power is provided as well.

Subsequently, we revisit and study the corresponding power
allocation problem within the novel setting of dual access
transmission options from the perspective of maximizing the
system social welfare, that is maximizing the summation of the
users’ utilities. This is realized, through a centralized approach
by assuming that a central authority has full knowledge of all
the required information for every user. Surprisingly enough,
it turns out and that in this case the optimal solution occurs
when the users transmit with their maximum possible power.
This is due to the nature of NOMA and the operation of the
SIC technique, and its impact on the optimization problem
under consideration, as explained later in the paper.

Towards providing a more efficient and effective solution to
the power allocation problem under consideration, while main-
taining its distributed and user-centric nature, we undertake
the perspective of games in satisfaction form. In this outlook,
every user aims at investing sufficient resources towards satis-
fying its QoS prerequisites, rather than purely maximizing its
utility. Specifically, we redesign the BR functions to fit this
framework and we prove that the BRD converge to the unique
ESE under one assumption that, interestingly enough, turns out
to be necessary and sufficient condition for the existence of
the ESE. We provide a solution to the problem of minimizing
the transmission power of each user subject to meeting its QoS
prerequisites, in order for it to find its unique BR. In this way,
a distributed algorithm is devised, which when deployed by
every user the system efficiently converges to the unique ESE.

Based on the above theoretical foundations, we study in
detail and demonstrate, how a network provider can effectively
employ different pricing schemes, in order to exploit the NE
of the game, towards augmenting the capacity of the network
and limiting the total interference. We observe and conclude
that, although the social welfare optimal solution results in
the application of no pricing in the system, charging the users
with cost that is commensurate with their transmission powers,
is imperative to reduce the interference, improve fairness in
resource allocation, and consequently result in more efficient
NE operation points. This observation, enables and is enabled
by the nature of NOMA and in particularly the SIC feature.
In principle, at the absence of any pricing mechanism, users far
from the BS (i.e., bad channel gains) may over-exploit the SIC
technology in their NOMA-based transmission, as they remain

practically unaffected by the strategies of the others. This in
turn increases the interference sensed in the NOMA-based
transmission by the users with good channel gains.

It is also shown that the potential over-exploitation of the
system by the users with bad channel gains, can be overcome
in the case of the centralized solution where overall system
social welfare maximization is targeted, by having those users
to transmit only in the OFDMA-based channel. This however
introduces unfairness among the users in terms of accessing
the available NOMA-based bandwidth, and at the same time
does not utilize the system resources and the dual technology
benefits at their full potential. To overcome these issues, it is
argued and demonstrated that, when the framework of games
in satisfaction form is instead adopted, the overall resource
allocation becomes not only more user centric - as the user
QoS prerequisites are inherently taken into consideration in a
more personalized manner - but also significant improvements
from the system point of view are obtained as well.

The remaining of the paper is organized as follows.
In Section II some background information about the games in
normal and satisfaction form is provided, while in section III
the dual access technology paradigm and model is intro-
duced, and the corresponding utilities are formally defined.
In Section IV a distributed resource allocation approach is pre-
sented based on the normal form games and the NE concept,
and subsequently Section V contains the presents a solution
targeting the overall system’s social welfare optimization.
In Section VI the power allocation problem is reformulated
and studied through the games in satisfaction form, aiming at a
satisfaction-aware resource allocation approach. In Section VII
a detailed numerical evaluation of the performance of the
proposed power allocation framework is provided, through
modeling and simulation, illustrating the operation, features
and benefits of each one of the proposed approaches. Finally,
Section VIII concludes the paper.

II. GAMES IN NORMAL AND SATISFACTION FORM

In this section, we provide some game theoretic definitions
and notation that will be used throughout the paper.

A. Games in Normal Form

A game in normal form is defined as G =
(K, {Ak}k∈K , {uk}k∈K), where K = {1, . . . , |K|}
represents the set of players, Ak is the action set of
player k ∈ K, uk(ak, a−k) represents player k’s payoff (i.e.,
utility function). An action profile is denoted by a vector
a = (a1, . . . , a|K|) ∈ A, where A = A1×· · ·×Ak×· · ·×A|K|.

Definition 1: An action profile aNE is a Nash Equilibrium
(NE) point for the game G = (K, {Ak}k∈K , {uk}k∈K) if

uk(aNE
k , aNE

−k ) ≥ uk(a′
k, aNE

−k ) ∀a′
k ∈ Ak, ∀k ∈ K (1)

Mechanisms in which the players seek to maintain payoffs that
are above a given threshold, instead of maximizing them, can
be modeled through games in satisfaction form.

B. Games in Satisfaction Form

A game in satisfaction form is defined as Ĝ =
(K, {Ak}k∈K , {fk}k∈K), where fk(a−k) = {ak ∈ Ak :
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uk(ak, a−k) ≥ uthr
k } determines the set of actions of player k

that allows the satisfaction of the minimum QoS prerequisites
or, in other words, actions that allow its payoff to be above a
given threshold value uthr

k , considering the actions a−k played
by all the other players [24]. Games in Satisfaction Form arise
as a powerful tool for analyzing systems for which, although
developing a competitive nature, the motives of the players
depend primarily on reaching a threshold in their pay-off,
instead of selfishly maximizing it. Relaxing the maximization
assumptions essentially we enlarge the set of feasible strategies
since, instead of restricting ourselves to solutions of global
optimum, we extend the solution space to a broader set. In a
practical setting, this would lead to important resource savings
and to an increase in the corresponding system capacity,
in terms of satisfied users.

Definition 2: An action profile a+ is a Satisfaction Equi-
librium (SE) for the game Ĝ = (K, {Ak}k∈K , {fk}k∈K), if

a+
k ∈ fk(a+

−k), ∀k ∈ K (2)

It should be emphasized that there could exist multiple
action vectors a+ = (a+

1 , . . . , a+
|K|) satisfying the player’s

minimum QoS prerequisites, some of which are of particular
interest. With those equilibria, the characterization of the feasi-
ble region of the strategy profiles, where everyone is satisfied,
is achieved. A representative example of a subset of SEs that
might present interest is the Efficient Satisfaction Equilibrium
(ESE) where each player of the system achieves its minimum
QoS prerequisites via being simultaneously penalized with
the minimum cost. To capture the notion of the players’
penalty and effort associated with a given action choice,
the concept of the cost function for each player is introduced.
For all k ∈ K, the cost function ck : Ak → [0, 1] satisfies the
following condition: ck(ak) < ck(a′

k), ∀(ak, a′
k) ∈ A2

k , if and
only if, ak requires a lower effort by player k than action a′

k.
Definition 3: An action profile a∗ is an ESE point for the

game Ĝ, with cost functions {ck}k∈K , if

a∗
k ∈ fk(a∗

−k), ∀k ∈ K (3a)

ck(ak) ≥ ck(a∗
k), ∀k ∈ K, ∀ak ∈ fk(a∗

−k) (3b)

III. DUAL ACCESS TECHNOLOGY PARADIGM & MODEL

In this paper we consider the coexistence of OFDMA and
NOMA-based communication in 5G wireless networks. Each
User Equipment (UE)1 has a dual communication interface to
transmit data either via using NOMA or OFDMA technique.
The frequency band operating over OFDMA is split into
resource blocks, where only one UE transmits exclusively
per resource block, thus, the intracell interference from those
transmissions, is eliminated. The frequency band operating
over the NOMA technique is accessed with equal rights and
priority by all the UEs.

Each UE’s goal is to opportunistically choose its transmis-
sion power levels and determine in an autonomous manner
its optimal transmission power split over the NOMA and
the OFDMA operating bands, to fulfill its QoS prerequisites.
Specifically, assuming that each UE k, k ∈ K picks a

1In the paper, the terms User Equipment (UE), transmitter, user, and player
are used interchangeably.

transmission power pk, which can be invested to the OFDMA
and NOMA based transmissions, the percentage of transmis-
sion power investment to the NOMA transmission is xk,
xk ∈ [0, 1], thus, the corresponding transmission power is
pN

k = xkpk, while the transmission power over the OFDMA
is the remaining amount, i.e., pO

k = (1 − xk)pk.
Let us consider |K| transmitters denoted by index k ∈ K

communicating with a given base station (BS). For all k ∈ K,
transmitter k uses a power level pk ∈ Ak. For each player
k ∈ K , pmax

k denotes the maximum feasible power level,
while hk denotes the channel gain coefficient between trans-
mitter k and the base station. We study the uplink power
allocation game where each user captures its received payoff
from each transmission (NOMA or OFDMA) with a utility
function - following Shannon capacity formula - as below.

uk(pk, p−k) = W log2(1 +
pkhk

σ2 + Jk
)[

bps

Hz
] (4)

where σ2 denotes the Additive White Gaussian system’s Noise
variance at receiver k, W is the considered bandwidth to the
user’s transmission, and Jk denotes the interference sensed by
player k. As mentioned before, user’s k interference in the
OFDMA channel will be eliminated and its payoff will be
independent of the transmission powers of the others. Thus,
in the OFDMA scenario, we have Jk = 0. However, in the
NOMA frequency band, player k’s sensed interference will
be Jk =

∑
j>k pN

j hj , i.e, it will sense the interference only
from the transmissions of the users with worse channel gains.
Thereby, for notation purposes, we assume that the users in the
set K are ordered according to their distance from the BS with
player |K| being the furthest, thus, h1 > h2 > · · · > h|K|.

Following the previous model, we construct the total
obtained actual utility of player k from its dual transmission
in the NOMA and OFDMA- based bands, as follows:
Uk(pk, xk; p−k, x−k) = uO

k (pk, xk) + uN
k (p, x)− ck(pk)

(5)

where, (a) the first term expresses the obtained utility from the
OFDMA-based transmission, uO

k (pk, xk) = A·log2(1+ hkpO
k

σ2 )
(obtained by appropriate adoption of the aforementioned
Eq. 6), (b) the second term expresses the corresponding utility
obtained from the NOMA-based transmission, uN

k (p, x) =
C · log2(1+ hkpN

k

σ2+
�

j>k pN
j hj

) (obtained by appropriate adoption
of the aforementioned Eq. 6) and, finally, (c) the third term is
a cost function that maps the user’s transmission power levels
to a real number, and represents the users’ need to converge to
an energy efficient outcome. It is noted that A [Hz] represents
the bandwidth of an OFDMA channel allocated to user k,
and C [Hz] is the total shared bandwidth among the users
transmitting in the NOMA-based frequency band.

IV. DUAL ACCESS TECHNOLOGY OPTION AS A NORMAL

FORM GAME

Following the previous analysis such a competitive com-
munication environment can be modeled via a normal form
game that is defined as G = (K, {Ak}k∈K , {Uk}k∈K), where
K = {1, . . . , |K|} represents the set of users in the examined
network and Uk(ak, a−k) represents player k’s payoff (i.e.,
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utility function) that is given by Eq. 5. Ak is the set of all
the available strategies of player k ∈ K and it consists of the
two variable tuples: Ak = {ak = (pk, xk) | 0 ≤ pk ≤
pmax

k and 0 ≤ xk ≤ 1}. The users’ competitive behavior
to transmit their data over the OFDMA and NOMA bands is
the driving factor to formulate their interactions as a normal
form game. Since each user has infinitely many strategies
to choose from, i.e., the game is infinite, the existence of
Nash Equilibrium is not guaranteed in general. Therefore,
our ultimate goal is to examine the existence of a Nash
Equilibrium point and introduce a mechanism that enables
the users to converge to the NE, that is, all maximizing
simultaneously their individual utilities.

A. Nash Equilibrium and Best Response Dynamics

In this section, we prove the existence of a NE in the
game G and we show that the Best Response Dynam-
ics (BRD) converge to such a point. The first step towards
this goal is the introduction of the Best Response (BR) of
a player k in a normal form game, which is the strategy
that maximizes its utility function given the strategies of
the others a−k, i.e., BRk(a−k) = {ak ∈ Ak : ak =
arg maxak∈Ak

Uk(ak, a−k)}. The BRD is defined as the
behavioral rule in which each user chooses its BR whenever
it is to respond to changes in the strategies of the others [27].

Clearly, Uk is a continuous function, defined on the compact
set [0, pmax

k ]× [0, 1], and therefore attains a maximum value,
given a−k. As it is later proven, Uk has a unique critical point.
Thus, assuming that if the maximum happens to belong in the
boundary then it is also unique, suffices to ensure that the
maximum will always be unique. Note that this maximum is
equivalent to k’s BR, i.e., BRk(a−k).

Proposition 1: a) Game G possesses a NE and b) In game
G, the BRD converges to a NE of the game.

Proof: Let BRt
k be the Best Response of player k in

turn t. Let also t1 be the turn during which the user |K|,
i.e., the user having the worst channel conditions, chooses a
strategy for the first time. Note that throughout the dynamics,
BR|K|(·) will not depend on the strategies of the others as
J|K| = 0. Therefore, as soon as player |K| plays its BR, it will
never deviate from that strategy, i.e., BRt

|K| = BRt1
|K|, for all

t ≥ t1. Let (p∗|K|, x
∗
K) = BRt1

|K|, then J|K|−1 = p∗|K|x
∗
|K|h|K|

will never change from time t1 onwards. So, if t2 is the first
time after t1 during which user |K| − 1 chooses strategy for
the first time, then in the turns after t2 player |K| − 1 will
never deviate from BRt2

|K|−1, i.e., BRt
|K|−1 = BRt2

|K|−1, for
all t ≥ t2. Continuing in this manner, we conclude that ∃t∗ :
BRt

k = BRt∗
k , ∀k ∈ K, ∀t : t ≥ t∗. Therefore, because of the

definition of the BR, if we denote the strategy profile aNE as
the one with aNE

k = BRt∗
k , ∀k ∈ K then,

Uk(aNE
k , aNE

−k ) ≥ Uk(a′
k, aNE

−k ) ∀a′
k ∈ Ak, ∀k ∈ K (6)

In a nutshell, the existence of the turn t∗ proves that the BRD
in G will converge at a strategy profile aNE which, due to
Eq. 6, will be an NE as well.

Notice that Proposition 1 implies that, provided
Uk(ak, a−k) admits a unique maximum for every user
k and every strategy profile of the others, a−k, the NE
will be unique. It should be also noted that in the general

implementation of the BRD, each user is not required to
know the distances from the BS and the strategies of the
rest of the users. For each user to determine in a distributed
and autonomous manner its best response strategy, only the
information of his/her personal sensed interference is needed.
This is still a challenging and open problem in terms of its
implementation, when considering the uplink NOMA-based
communication. A possible solution would be the base station
to provide the sensed interference to each user via unicasting
it, thus significantly reducing the signaling overhead burden
from the end-users’ side. Moreover if the system knows
a priori the ordering of the users depending on their distance
from the base station, the convergence time of the BRD to
the unique NE can be substantially improved. Specifically,
Proposition 1 implies that the first player that should decide
on its strategy is player |K|, the second should be player
|K| − 1 and so on. In that fashion, the BRD would converge
to the unique NE only in |K| turns, i.e., t∗ = |K|.

In order for the above proposition to be plausible for the
system, the calculations of the BRs should be efficient and
possible for every user in the network. Therefore, in order
to propose an efficient distributed algorithm, we first focus
on the problem of maximizing each user’s utility (i.e., Eq. 5).
In the rest of the paper, we adopt a linear usage-based pricing,
i.e., a linear cost function ck(·) with respect to the transmission
power, i.e, ck(pk) = λkpk, where λk > 0 is a personalized
user pricing parameter. This parameter can either be set a priori
by the user itself to express its own dissatisfaction regard-
ing the consumption of its personal resources, e.g., battery
life, or by a centralized authority, as a control parameter,
to mitigate the interference and prevent aggressive users from
over-exploiting the system.

Proposition 2: The function Uk(pk, xk; p−k, x−k), given
by Eq. 5 and defined on the set [0, pmax

k ] × [0, 1], attains its
maximum at one of the following points:

1) ( A
λk
− σ2

hk
, 0)

2) ( C
λk
− σ2+Jk

hk
, 1)

3) (pmax
k , 1

C+A · Chkpmax
k +Cσ2−A(σ2+Jk)

hkpmax
k

)

4) ( (A+C)hk−(2σ2+Jk)λk

λkhk
, Chk−λk(σ2+Jk)

(A+C)hk−(2σ2+Jk)λk
)

5) (pmax
k , 0)

6) (pmax
k , 1)

Proof: As already mentioned, Uk attains a maximum value
which either occurs at the boundary or at an interior point
of its domain. Let (p∗k, x∗

k) ∈ [0, pmax
k ] × [0, 1] be a local

maximum of Uk. Assume first that (p∗k, x∗
k) does not belong

to the boundary of [0, pmax
k ]×[0, 1]. We proceed by computing

∂Uk

∂xk
= hkpk

(
− A

σ2 + hkpk(1−xk)
+

C

(σ2+Jk)+hkpkxk

)
(7)

∂Uk

∂pk
= hk

(
A(1 − xk)

σ2 + hkpk(1− xk)
+

Cxk

(σ2 + Jk) + hkpkxk

)
−λk. (8)

We want to determine pairs (pk, xk) that simultaneously
satisfy both Eq. 7 and Eq. 8 are equal to zero. Let us denote
Ik := (σ2 + Jk). We observe that ∂Uk

∂xk
= 0 if and only if

Cσ2 + Chkpk(1− xk) = AIk + Ahkpkxk. (9)
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Furthermore, ∂Ui

∂pk
= 0 if and only if

(Cσ2 + Chkpk(1−xk)) · xk + (AIk + Ahkpkxk) · (1−xk)
(σ2 + hkpk(1− xk)) · (Ik + hkpkxk)

=
λk

hk
. (10)

Based on Eq. 9, Eq. 10 can be rewritten as C
Ik+hkpkxk

= λk

hk

and therefore

pkxk =
Chk − λkIk

λkhk
. (11)

From Eq. 11 and Eq. 9, we conclude that

p∗k =
(A + C)hk − (2σ2 + Jk)λk

λkhk
, (12)

which in turn, using Eq. 11, yields to

x∗
k =

Chk − λk(σ2 + Jk)
(A + C)hk − (2σ2 + Jk)λk

. (13)

Assume now that (p∗k, x∗
k) belongs to the boundary of

[0, pmax
k ] × [0, 1]. Clearly, we have p∗k �= 0. If x∗

k = 0,
then based on Eq. 8, we have p∗k = min{ A

λk
− σ2

hk
, pmax

k }.
Similarly, if x∗

k = 1, then p∗k = min{C
λ − σ2+Jk

hk
, pmax

k }.
Finally, if p∗k = pmax

k then, using Eq. 7, we conclude x∗
k =

min{ 1
C+A · Chkpmax

k +Cσ2−A(σ2+Jk)
hkpmax

k
, 1}.

From the proof of the proposition above one should note
that, in order for points 1-4 of Proposition 4.2 to be possible
local maxima of the utility function, the first coordinate should
belong to the interval [0, pmax

k ] and the second coordinate to
the interval [0, 1]. Notice that the non-negativity conditions for
p∗k and x∗

k provide upper bounds, which will be utilized in the
next proposition, for λk via Eq. 12 and 13.

Finally in the following proposition, we provide a sufficient
condition that guarantees that the critical point given by Eq. 12
and Eq. 13 respectively, is a local maximum of the utility
function. Note that the such condition is not necessary in
order for the BRD (and thus for the algorithm proposed
in the following section) to converge to the NE. However,
the following proposition can provide further intuition about
when the users obtain greater utilities by choosing strategies
from their boundaries. The analogy from the classic problem
of the uplink power control would be the sufficient conditions
that force the users of the network to transmit with their
maximum one [19].

Proposition 3: Suppose that

λk ≤ min
{

Ahk

2σ2
,

Chk

2σ2 + Jk

}
. (14)

Then the critical point (p∗k, x∗
k), whose coordinates are given

by Eq. 12 and Eq. 13 respectively, is a local maximum of the
function Uk(pk, xk; p−k, x−k). Furthermore, provided that

λk ≥ (A + C)hk

σ2 + (σ2 + Jk) + hkpmax
k

(15)

holds true, we have (p∗k, x∗
k) ∈ [0, pmax

k ]× [0, 1].
The proof is available in Appendix A.

B. Best Response for Maximization (BRM) Algorithm

Following the analysis from the previous section, we intro-
duce the Best Response for Maximization (BRM) algorithm,
which suggests holistic dynamics for the users of the system,
in order for the system to converge to the NE of the game

Algorithm 1 Best Response for Maximization (BRM)
1: M← 0; // Represents the maximum utility
2: D ← ∅; // Represents the maximizers of Uk(), corre-

sponding to M, given a−k. D.p denotes the power and
D.x the splitting factor

3: δ ← ∅;
4: for δ from points 4.2.1 to 4.2.6 do
5: if δ ∈ [0, pmax

k ]× [0, 1] then
6: if Uk(δ, a−k) >M then
7: D ← δ;
8: M← Uk(δ, a−k);
9: end if

10: end if
11: end for
12: play D; // Play the Best Response

in a distributed and autonomous manner. First, each user k
should (randomly) initialize its strategy, i.e., D. After that,
BRM should be executed by each player whenever is its turn
to choose a strategy (either sequentially or asynchronously).
Note, that although we refer to a−k as the strategies that are
chosen by the players except k, player k should know only
the strategies of the players k+1, . . . , |K| in order to execute
the algorithm BRM. As stated earlier, if the system knows the
ordering of the users, then |K| turns of the BRM algorithm are
sufficient in order all the users to converge to the NE. Thereby,
in such scenario, due to the O(1) time complexity required
for each user to determine its BR (via the BRM algorithm),
the total time complexity of the dynamics would be O(|K|).

V. DUAL ACCESS TECHNOLOGY OPTION FOR SYSTEM

SOCIAL WELFARE OPTIMIZATION

In this section, a centralized approach to the power alloca-
tion problem is examined, aiming at determining the users’
optimal overall transmission power, as well as the power
investment in their NOMA and OFDMA-based transmissions,
i.e., p∗k, x∗

k, 1 − x∗
k respectively. The corresponding problem

aims at maximizing the system’s social welfare, i.e., the
summation of the users’ utility functions (Eq. 5). Note that,
in this formulation, the central authority might tune the pricing
parameter, λk, in order to maximize the aforementioned sum-
mation and, thus, in this section, it is considered as a control
parameter that the centralized authority can optimize on. The
introduced centralized approach is implemented and solved
by a centralized authority, which in a realistic implementation
could be the base station or a software defined controller. The
corresponding problem is formulated as follows.

max
p,x,λ

∑
k∈K

(
uO

k (ak) + uN
k (ak, a−k)− λkpk

)
s.t. pk ∈ [0, pmax

k ], xk ∈ [0, 1] ∀k ∈ K

Let

S(p, x, λ) :=
∑
k∈K

(
A log2(σ

2 + hkpk(1 − xk))
)

+ C log2(σ
2 +

∑
k∈K

pkhkxk)−
∑
k∈K

λkpk.
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Following simple mathematical manipulations, the above
optimization problem can be rewritten as below.

(P1): max
p,x,λ

S(p, x, λ)

s.t. pk ∈ [0, pmax
k ], xk ∈ [0, 1] ∀k ∈ K.

Theorem 4: Let (p∗, x∗, λ∗) be the maximum of Prob-
lem P1, and set

z∗k = 1 +
Cσ2 −Aσ2 −A · |K|Cσ2−|K|Aσ2+C

�
k∈K hkpmax

k

|K|A+C

Chkpmax
k

.

Then p∗k = pmax
k , λ∗

k = 0 and

x∗
k =

⎧⎪⎨
⎪⎩

0, if z∗k ≤ 0
z∗k, if z∗k ∈ (0, 1)
1, if z∗k ≥ 1

Proof: Let pmax := (pmax
1 , . . . , pmax

|K| ). Notice that
S(p, x, · ) is decreasing with respect to λk; hence we can
consider that λ∗

k = 0, for all k ∈ K . Now notice that
S(·, x, ,0) is increasing with respect to pk; hence we can
consider that p∗k = pmax

k , for all k ∈ K . In other words,
the maximum of Problem P1 is the maximum of the function

S := S(pmax, ·,0).
We first compute the critical points of S. We have
∂S
∂xk

=
−Ahkpmax

k

σ2 + hkpmax
k (1− xk)

+
Chkpmax

k

σ2 +
∑

k∈K hkpmax
k xk

.

Hence ∂S
∂xk

= 0, for k = 1, . . . , |K|, if and only if

Cσ2 + Chkpmax
k (1− xk)−Aσ2 −A

∑
k∈K

hkpmax
k xk = 0.

(16)

for all k = 1, . . . , |K|. Notice that Eq. 16 is equivalent to

xk = 1 +
Cσ2 −Aσ2 −A

∑
k∈K hkpmax

k xk

Chkpmax
k

, (17)

for all k = 1, . . . , |K|. If we add the |K| equations in Eq. 16,
we have∑
k∈K

hkpmax
k xk =

|K|Cσ2 − |K|Aσ2 + C
∑

k∈K hkpmax
k

|K|A + C

(18)

and therefore Eq. 17 yields that the critical points of S are:

z∗k = 1 +
Cσ2 −Aσ2 −A · |K|Cσ2−|K|Aσ2+C

�
k∈K hkpmax

k

|K|A+C

Chkpmax
k

,

(19)

for k ∈ K . Now notice that, for each k ∈ K , we have
∂2S
∂x2

k

=
−A(hkpmax

k )2

(σ2 + hkpmax
k (1 − xk))2

+
−C(hkpmax

k )2

(σ2 +
∑

k∈K hkpmax
k xk)2

.

Hence ∂2S
∂x2

k
< 0, or, in other words, S is a coordinate-wise

concave function. Hence x∗
k = z∗k if z∗k ∈ (0, 1), x∗

k = 1,
if z∗k ≥ 1, and x∗

k = 0, if z∗k ≤ 0.
It should be mentioned that the centralized power allo-

cation outcome can be used for benchmarking purposes as
well. In particular, in section VII-B, we compare the cen-
tralized power allocation outcome to the corresponding ones

achieved by the distributed resource allocation under the
normal form games. Furthermore, we examine whether setting
λk = 0, ∀k ∈ K , as the social welfare optimal solution
does, is beneficial for the system and the users. Finally, it is
noted that the centralized approach assumes that a centralized
authority knows a priori all the user specific information, and
that the latter will accept and follow the strategies that they
will be assigned to them.

VI. DUAL ACCESS TECHNOLOGY OPTION AS A

SATISFACTION FORM GAME

A novel approach that can be employed in order to achieve
the objective of satisfying the users’ minimum QoS require-
ments involves games in satisfaction form. As mentioned
earlier in the paper, a game in satisfaction form is formulated
as Ĝ = (K, {Ak}k∈K , {fk}k∈K), where K = {1, . . . , |K|}
represents the set of users and Ak is the set [0, pmax

k ]× [0, 1],
whose elements are denoted ak = (pk, xk). The difference
between the G and Ĝ is that the third component of Ĝ is not
given by the user’s utility function, but is given by the function
fk that maps vectors a−k ∈ A−k to a set of vectors ak ∈ Ak.
Specifically, if we denote the minimum QoS requirement of
user k as tk, then fk is given by

fk(a−k) = {a−k ∈ Ak : uk(ak, a−k) ≥ tk}.
The function uk(ak, a−k) represents player k’s payoff (i.e.,
utility function) that is given by

uk(pk, xk; p−k, x−k) = uO
k (pk, xk) + uN

k (p, x) (20)

Note, that the only difference between Eq. 20 and Eq. 5 is
that the cost function is omitted here.

The rationale of this type of modeling in the case of satisfac-
tion form games, is that the users intrinsically behave in a more
social manner by aiming to fulfill their minimum QoS prereq-
uisites, rather than maximizing their utility. Thus, the system
has less incentives to penalize them with a usage-based pricing
scheme, as in Eq. 5. Furthermore, by adopting the games in
satisfaction form, we implicitly assume that the key objective
of a user is to reach a particular threshold in its utility function.
Therefore, each user has inelastic QoS prerequisites (i.e.,
Shannon capacity) that even if one explicitly penalized their
transmissions, they would be unaffected by it, in case they
were still satisfied. This discussion connotes the fact that in
the respective optimization problem of a single user, the utility
function should be a part of the constraints rather than the
optimization objective. Nonetheless, as the definition of ESE
points suggests, when players are to choose between some
strategies that satisfy them, they will choose the one with
the lowest cost. Aligned with the analysis of the previous
section, we consider cost functions that are increasing with
respect to the transmission powers. Since the user utilizes
the cost function only to compare strategies, we can use as
cost function the transmission powers itself without loss of
generality.

Formulating the problem with a satisfaction form game,
we aim at establishing the existence of at least one ESE
described in section II-B, along with showing that the system
will eventually converge to such an equilibrium.
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A. Efficient SE and Best Response Dynamics

In this section, we provide sufficient and necessary condi-
tions that guarantee the existence of an ESE in game Ĝ and,
provided that such an ESE exists, we additionally show that
the BRD converge to such an equilibrium. Finally, we employ
optimization techniques in order to find the possible BRs of
the users, something that lays the foundation for the design of
an efficient distributed algorithm. For that purpose, we should
first redesign the BR function of each user according to its
motives, taking into account the objective of QoS satisfaction.
In particular, since players demand to meet their minimum
QoS requirements with the lowest possible cost (transmission
power) as dictated by the definition of ESE, then given a−k,
we have that the BR of player k in the satisfaction form game
is defined as BRk(a−k) = {ak = (pk, xk) ∈ Ak : ak =
arg minak∈fk(a−k) ck(pk)}.

Assumption 5: Each user k ∈ K has a non-empty BR set
when the rest of the users choose a BR strategy. That is:

• ∃a∗
|K| ∈ A|K| : a∗

|K| ∈ BR|K|(·).
• ∃a∗

|K|−1 ∈ A|K|−1 : a∗
|K|−1 ∈ BR|K|−1(a∗

|K|).
• …
• ∃a∗

1 ∈ A1 : a∗
1 ∈ BR1(a∗).

Observe that a vector a∗ = (a∗
1, . . . , a

∗
|K|), given by

Assumption 5, is an ESE of the game Ĝ. Using a similar
argument as the one in Proposition 1, we can show that
the BRD of the game Ĝ converges to an ESE a∗. Later
on, we prove that the assumption above is a sufficient and
necessary condition for the existence of an ESE in the
game Ĝ.

The corresponding optimization problem that arises when
each user attempts to find its BR is formulated as follows.

(P2): min
(pk,xk)

pk

s.t. uk(pk, xk; p−k, x−k) ≥ tk,

pk ∈ [0, pmax
k ] and xk ∈ [0, 1].

We employ the Karush–Kuhn–Tucker (KKT) conditions in
order to determine potential local optima of Problem P2.
Before proceeding with the details of obtaining the solution,
we first provide some remarks about local optima of Prob-
lem P2 as well as the ESEs of Ĝ.

Lemma 6: Suppose that (p∗k, x∗
k) is a local minimum of

Problem P2. Then it holds true that uk(p∗k, x∗
k) = tk. Fur-

thermore, if (p∗k, x1) and (p∗k, x2) are both local minima of
Problem P2 then x1 = x2.

Proof: To prove the first statement, suppose that
uk(p∗k, x∗

k) > tk holds true. Then the continuity of uk, and
the fact that uk( ·, x∗

k) is increasing, imply that there exists
ε > 0 such that uk(p∗k − ε, x∗

k) ≥ tk, contrariwise to the
optimality of (p∗k, x∗

k). To prove the second statement, suppose
that (p∗k, x1) and (p∗k, x2) are local optima of Problem P2
and assume, without loss of generality, that x1 < x2. Notice
that the function uk(p∗k, · ) is strictly concave, which in turn
implies that for all x ∈ (x1, x2), we have uk(p∗k, x) > tk.
Let x0 ∈ [x1, x2] be such that uk(p∗k, x0) ≥ uk(p∗k, x), for all
x ∈ (x1, x2) and let ε > 0 be such that ε < uk(p∗k, x0) − tk.
The intermediate value theorem implies that there exists x ∈
(x1, x2), such that uk(p∗k, x) = tk+ε. Then, since the function

uk( ·, x) is increasing, continuous and satisfies uk(0, x) = 0,
it follows that there exists δ > 0 such that uk(p∗k− δ, x) = tk,
contrariwise to the optimality of (p∗k, x1).

Lemma 6 implies that for each user k ∈ K and each a−k ∈
A−k, the set BRk(a−k) will either be empty or will consist
of just one element, namely, (p∗k, x∗

k) ∈ Ak. In particular,
this means that the optimum choice of transmission power
corresponds to a unique optimum choice of xk , and that for
every other choice of xk the utility decreases. That said,
whereas we modeled each user’s BR to depend on its power
consumption and be indifferent of its choice of xk , it turns
out that there is only one x∗

k that corresponds to the optimal
solution of k. Moreover, the following proposition proves the
uniqueness of the ESE point in Ĝ.

Proposition 7: Assumption 5 ⇐⇒ There exists an ESE
in game Ĝ.

Proof: (⇒) As is already mentioned, the strategy profile
a∗ that is derived from Assumption 5 is an ESE for Ĝ and is
unique based on Lemma 6.

(⇐) Let a random ESE of Ĝ, a′. Then we have that
a′
|K| ∈ BR|K|(·) and based of Lemma 6 we have that

a′
|K| = a∗

|K|. For user |K| − 1 we have that a′
|K|−1 ∈

BR|K|−1(a′
|K|) = BR|K|−1(a∗

|K|) and from the assumption 5
that a∗

|K|−1 ∈ BR|K|−1(a∗
|K|). So again, based on Lemma 6,

we have that a′
|K|−1 = a∗

|K|−1. With the same fashion, we can
prove that a′

k = a∗
k, ∀k ∈ K and thus a′ = a∗.

Corollary 8: When assumption 5 holds true there exists a
unique ESE a∗ in Ĝ. When assumption 5 does not hold true
then there does not exists any ESE in the game Ĝ.

The corollary above states that the Assumption 5 is neces-
sary and sufficient condition for an ESE to exist. In the fol-
lowing analysis, we determine possible optima of Problem P2
using the KKT conditions (see [28, Chapter 2]). In order to
derive the KKT conditions, we first consider the Lagrangian
function of Problem P2:

L(pk, xk; μ̄) = pk + μ1 · (−uk + tk)
+ μ2 · (−pk) + μ3 · (pk − pmax

k )
+ μ4 · (−xk) + μ5 · (xk − 1). (21)

The KKT theorem (see [28, Theorem 2.1]) states that if
(p∗k, x∗

k) is a local minimum of Problem P2 then, there exists
a non-zero vector of Lagrange multipliers, which satisfies the
following conditions.

Condition 9 (KKT conditions): If (p∗k, x∗
k) is a local

minimum of Problem P2 then there exists a vector
(μ1, μ2, μ3, μ4, μ5) �= 0 such that:

1) −μ1 · ∂uk(p∗
k,x∗

k)
∂xk

− μ4 + μ5 = 0
2) 1− μ1 · ∂uk(p∗

k,x∗
k)

∂pk
− μ2 + μ3 = 0

3) μ1 · (−uk(p∗k, x∗
k) + tk) = 0

4) μ2 · (−p∗k) = 0
5) μ3 · (p∗k − pmax

k ) = 0
6) μ4 · (−x∗

k) = 0
7) μ5 · (x∗

k − 1) = 0
8) μ1, μ2, μ3, μ4, μ5 ≥ 0
9) p∗k ∈ [0, pmax

k ]
10) x∗

k ∈ [0, 1].
The parameters μ1, . . . , μ5 denote the Lagrange multipliers.

Using the KKT Conditions 9, we obtain the following.
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Theorem 10: Suppose that (p∗k, x∗
k) is a local minimum of

Problem P2. Then (p∗k, x∗
k) is one of the following points:

1) (σ2(etk/A−1)
hk

, 0)

2) ( (σ2+Jk)(etk/C−1)
hk

, 1)

3) (pmax
k , x∗), where x∗ = Cσ2+Chkpmax

k −A(σ2+Jk)
(A+C)hkpmax

k
.

4) (p∗, x∗), where

p∗ = (A + C)

(
etkσ2A(σ2 + Jk)C

AACChA+C
k

) 1
A+C

− 2σ2 + Jk

hk

and

x∗ =
C
(

etk σ2A(σ2+Jk)C

AACC

) 1
A+C − (σ2 + Jk)

(A + C)
(

etk σ2A(σ2+Jk)C

AACC

) 1
A+C − (2σ2 + Jk)

In the following, we first discuss some interesting observa-
tions regarding the Lagrange multipliers. Assume that (p∗k, x∗

k)
is a local minimum of Problem P2. Lemma 6 implies
that uk(p∗k, x∗

k) = tk must hold true, and hence Condi-
tion 9.3 implies that μ1 > 0. We now claim that we can assume
that the Lagrange multipliers satisfy μ2 = μ3 = μ4 = μ5 = 0.
Indeed, since tk > 0, we have p∗k > 0 and thus Condition 9.4
implies that μ2 = 0. Condition 9.5 implies that if μ3 > 0
then p∗k = pmax

k , which in turn implies that x∗
k must satisfy

uk(pmax
k , x∗

k) = tk. Let xm be the smallest x ∈ [0, 1] such
that uk(pmax

k , xm) = tk and let xM be the largest x ∈ [0, 1]
such that uk(pmax

k , xm) = tk. From Lemma 6 it follows
that xm = xM and therefore, since uk(pmax

k , · ) is concave,
we have that x∗

k must satisfy ∂uk(pmax
k ,x∗

k)
∂xk

= 0 or, equivalently,

based on Eq. 7, that x∗
k = Cσ2+Chkpmax

k −A(σ2+Jk)
(A+C)hkpmax

k
.

Condition 9.6 implies that if μ4 > 0 then x∗
k = 0 and

therefore, since uk is increasing with respect to pk, for fixed
xk, it follows that p∗k = σ2(etk/A−1)

hk
, provided σ2(etk/A−1)

hk
∈

[0, pmax
k ]. For the same reason, Condition 9.7 implies that if

μ4 > 0 then x∗
k = 1 and hence p∗k = (σ2+Jk)(etk/C−1)

hk
,

provided (σ2+Jk)(etk/C−1)
hk

∈ [0, pmax
k ]. Summarising the dis-

cussion, we conclude to the following.
Corollary 11: Let (p∗k, x∗

k) be a local minimum of Prob-
lem P2. Then the following hold true:

1) If x∗
k = 0 then p∗k = σ2(etk/A−1)

hk
.

2) If x∗
k = 1 then p∗k = (σ2+Jk)(etk/C−1)

hk
.

3) If p∗k = pmax
k then x∗

k = Cσ2+Chkpmax
k −A(σ2+Jk)

(A+C)hkpmax
k

.

We may therefore assume that μ2 = μ3 = μ4 = μ5 = 0 and
we are looking for a triplet (p∗k, x∗

k, μ1) ∈ (0, pmax
k )× (0, 1)×

(0,∞) that satisfies Condition 9.1–3. This is the content of
the following result.

Proposition 12: There is a unique triplet (p∗k, x∗
k, μ1), that

satisfies Condition 9, 1–3, and the coordinates are given by

x∗
k =

C
(

etk σ2A(σ2+Jk)C

AACC

) 1
A+C − (σ2 + Jk)

(A + C)
(

etk σ2A(σ2+Jk)C

AACC

) 1
A+C − (2σ2 + Jk)

,

p∗k =
A + C

hk

(
etkσ2A(σ2 + Jk)C

AACC

) 1
A+C

− 2σ2 + Jk

hk
,

and

μ1 =
1
hk

(
etkσ2A(σ2 + Jk)C

AACC

) 1
A+C

.

The proof of Proposition 12 is deferred to the Appendix B.
Bearing in mind the aforementioned analysis, we proceed with
completing the proof of Theorem 10.

Proof of Theorem 10: Let (p∗k, x∗
k) be a local minimum of

Problem P2. Then Corollary 11 and Proposition 12 imply that
(p∗k, x∗

k) is either one of the first three points in Theorem 10
or, provided its coordinates belong to the set (0, pmax

k )×(0, 1),
the fourth point in Theorem 10. �

In the following analysis we provide sufficient conditions
that ensure that the BR does not lie at the boundaries.
We clarify here that such conditions are not necessary
for the convergence of the BRD (and subsequently for
the convergence of the algorithm proposed in the fol-
lowing section) to the ESE. Notice that in principle,
the fourth point in Theorem 10 may not belong to the set
(0, pmax

k ) × (0, 1). Indeed, the following hypothesis provides
sufficient conditions that guarantee that it does belong to
this set.

Assumption 13: Let S :=
(

AACC

σ2A(σ2+Jk)C

) 1
A+C

. A thresh-
old, tk, in Problem P2 will be referred to as special, if it
satisfies the following inequalities:

tk > (C+A) · log2

(
S · 2σ2+Jk + 2−1/4h

1/2
k (σ2+Jk)1/2

C + A

)

(22)

and

tk < (C + A) · log2

(
S · 2σ2 + Jk + hkpmax

k

C + A

)
. (23)

Furthermore, tk is assumed to satisfy

tk ≥ (C + A) · log2

(
S · 2σ2 + Jk

A

)
. (24)

In particular, notice that in the assumptions stemming from
Eq. 22, Eq. 23 and Eq. 24, we implicitly consider that

2−1/4(σ2 + Jk)1/2 < h
1/2
k pmax

k

and
2σ2 + Jk

A
<

2σ2 + Jk + hip
max
k

C + A
Lemma 14: Suppose that tk is a special threshold,

as defined in Assumption 13. Then the triplet (p∗k, x∗
k, μ1),

given by Proposition 12, additionally satisfies (p∗k, x∗
k, μ1) ∈

(0, pmax
k )× (0, 1)× (0,∞).

Proof: Now notice that Assumption 13 implies that p∗k ∈
(0, pmax

k ). Moreover, it follows from Eq. 24 that x∗
k > 0 as

well as x∗
k < 1. Hence, provided Assumption 13 holds true,

we have (x∗
k, p∗k) ∈ (0, 1)× (0, pmax

k ).
Furthermore, we report the fact that Assumption 13 is

sufficient for the triplet provided by Proposition 12 to be a
local optimum of Problem P2. More precisely, we have the
following proposition.

Proposition 15: Suppose that Assumption 13 holds true.
Then the pair (p∗k, x∗

k), whose coordinates are defined in
Proposition 12, is a local minimum of Problem P2.

The proof of Proposition 15 is deferred to the Appendix C.
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Algorithm 2 Best Response for Satisfaction (BRS)
1: μ←∞; // Represents the minimum power
2: D ← ∅; // Represents the minimizers, given a−k. D.p

denotes the power and D.x the splitting factor
3: δ ← ∅;
4: for δ from points 5.8.1 to 5.8.4 do
5: if δ ∈ [0, pmax

k ]× [0, 1] then
6: if Uk(δ, a−k) ≥ tk then
7: if δ.p < μ then
8: D ← δ;
9: μ← δ.p;

10: end if
11: end if
12: end if
13: end for
14: play D; // Play the Best Response

B. Best Response for Satisfaction (BRS) Algorithm

Following the analysis of the proof of Theorem 10, we pro-
vide the Best Response for Satisfaction algorithm that should
be executed by each user k who knows the strategies of the
other users (the knowledge of the strategies of the users with
worse channel gains is sufficient). Each user should initialize
at first (randomly) its choice while after executing the BRS
algorithm it will have chosen its BR. Similar to Section IV-A,
if the users are ordered according to their respective distances
from the BS, each user should execute BRS only once, and
thereby |K| turns of the algorithm are sufficient for the system
to converge to the ESE. Similar to the BRM algorithm and the
dynamics that it dictates, BRS needs O(1) time complexity to
determine the BR of a user, while the total dynamics would
need O(|K|) in such scenario.

VII. NUMERICAL RESULTS

In this section, we provide a detailed numerical performance
evaluation of the proposed power allocation framework
through modeling and simulation, illustrating the opera-
tion, features and benefits of the proposed modeling and
approaches. Specifically, in Section VII-A, we initially estab-
lish the path - through the use of different pricing sce-
narios - so that centralized authority could manipulate the
NE point at which the users tend to converge, in order to
make the overall power allocation more fair and efficient.
Subsequently, in Section VII-B the NEs resulting from the
distributed power allocation (i.e., games in normal form) under
the employment of different pricing scenarios, are compared
against the corresponding centralized solution (of Section V).
Moreover, in section VII-C, we examine the benefits of the
framework of satisfaction form games when used as a mech-
anism to formulate and solve the power allocation problem
under consideration. In particular, we compare the outcome
of the NE based solution, with the corresponding ESE points
resulting from the game in satisfaction form for three different
indicative scenarios of users’ QoS prerequisites. In our study,
for demonstration purposes, we consider |K| = 25 users in
the system distributed in an equal step distance from the base
station, ranging from 40m to 1Km. The bandwidth of each

Fig. 1. Social Welfare as a function of the pricing factor c.

OFDMA channel is A = 180kHz and we consider 25 orthog-
onal such channels totaling a bandwidth of approximately
5Hz, while the total shared bandwidth among all the users
in the NOMA band is C = 10MHz. The users’ maximum
transmission power is assumed to be pmax

k = 2W, ∀k ∈ K .

A. Pricing Considerations and Nash Equilibrium Points

The concept of resource pricing has been used in the liter-
ature in order to enable the distributed resource management
approaches to conclude to more efficient outcomes from a
social welfare point of view. In our case, the usage-based pric-
ing scheme ck(pk) = λkpk, adopted in Eq. 5, depends on the
user’s personal transmission power pk. In principle, the role
of the pricing parameter λk of each user k is twofold. First,
it can be used to express the personalized dissatisfaction of the
user regarding the consumption of its own personal resource,
i.e. the mobile device’s available battery, thus, motivating the
user to sparingly use its limited energy resources. Second,
it acts as a control parameter by the centralized authority
to drive the overall system in a more desirable operation
state. Our evaluation, focuses on the latter, and thus in the
following, we particularly examine the role of pricing, under
the perspective that λk is determined by the network provider
(i.e., centralized authority).

For simplicity in the presentation and subsequent discussion,
we set λk = cαk, where c is a constant pricing factor that
is imposed to every user, while αk is a personalized pricing
factor dependent on the user k. It should be reminded here
that, as shown in section V, through the centralized approach
the optimal solution of the power allocation problem from the
perspective of the social welfare, occurs when λk = 0, for
all k ∈ K . In this section, we experiment with the constant
pricing factor c in order, on the one hand to gain some insight
about the impact of the socially optimal zero-cost pricing on
various performance criteria such as fairness, etc., while on
the other hand to propose the most appropriate value for c (in
the following we refer to as cbest), that drives the system to
operate in a desirable state, as detailed below.

Fig. 1 presents the resulting social welfare (summation of
the corresponding user utilities) for the solution of the dis-
tributed resource allocation as a function of the pricing factor
c. This is obtained by calculating the corresponding social
welfare achieved when the users converge to the respective
NE, while considering each time an arbitrary fixed value for
the parameter c. We also note that, though the procedure
described here is fundamentally different from the solution
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Fig. 2. Percentage increase summation of the user utilities wrt the social
welfare optimal solution (c = 0), vs. the pricing factor c.

Fig. 3. Variance of utility from the median with respect to c.

of the centralized resource allocation problem in Section V,
the maximum social welfare, is also achieved for zero cost,
i.e., c = 0, thus, λk = 0, ∀k ∈ K . This can be also
proven formally, if one solves the corresponding maximization
problem over λ of the summation of the utility functions given
the NE, which depends on the λ itself. In other words the
NE with the maximum social welfare corresponds to c = 0.
However, for increasing c we note in Fig. 1 that multiple
local extrema (red points) may occur. An additional interesting
observation is that there are some choices of the cost parameter
c (black arrows), where for instance 20 out of 25 users result
in greater utilities than in the corresponding solution under the
objective of social welfare optimality (i.e. c = 0).

The latter observation motivates the need for investigating
more in depth the impact and benefit of different pricing
factors on various user and network performance metrics of
high interest and importance, other than solely the social
welfare. To better quantify this, let u0

k be the utility of the kth
user under the social welfare optimal solution (i.e. c = 0) and
uc

k be the utility that the NE allocates to user k when the fixed
cost factor c is used. Then, for each c we examine the quantity∑

k∈K (uc
k − u0

k)/u0
k which is the summation of the percent-

age increases of the utilities of the users. Fig. 2, shows that
this metric increases as we increase c until a point (red circle) -
reflecting cbest - where, after this, the metric is strictly lower.
At this point the aforementioned quantity reaches the value
of 10.60 corresponding on average to a 42.4% increase on
each user utility. Similar observations and conclusions can be
drawn from Fig. 3 where we notice that increasing c, reduces
the variance,

∑
k∈K (uc

k −median)2/|K|, from the median
utility at a specific c, while the value cbest is very close to the
“knee” of the graph after which the decrease on the variance
begins to saturate.

With reference to the adopted pricing parameter λk = cαk,
apart from the fixed factor c discussed above, it is also noted
that the pricing factor αk - being in nature different for each
user k - can be further exploited, and in particular in the

Fig. 4. Power allocation, splitting factors and utilities at equilibrium for each
user (i.e. function of user distance from the BS), for various pricing scenarios
(αk = dj

k).

case of adopting NOMA. For that purpose, in the comparative
results presented in the following subsection, we examine
different pricing factors αk that depend on the distance dk

of user k from the BS, in the following form αk(dk) = dj
k,

where the exponent j is an integer allowing the realization of
different pricing scenarios (from less strict to more aggressive
ones). For completeness we note, that for the results that have
been presented so far, for demonstration only purposes, were
obtained using the specific form of αk(dk) = d4

k. Taking this
into account, it is worth noting that in Fig. 3 as c continues to
increase, the variance does not increase whereas some users
(those in particular with bad channel gains) obtain utilities that
are virtually zero, owing to the pricing factors αk(dk) = d4

k

adopted. This is due to the fact that, as it will be also clarified
and demonstrated in the next subsection, the users with bad
channel gains, obtain large utilities by worsening the NOMA
channel conditions in the lower values of λk.

B. Comparison Between the NEs and the Centralized
Solution

For the remaining of this section we assume the use of
c = cbest for any given αk. In particular, Fig. 4 studies
the power allocation (Fig. 4a), the corresponding splitting
factors xk (Fig. 4b) and the resulting utilities (Fig. 4c) at the
NE for four different pricing factors αk, as well as for the
optimal centralized solution (i.e., Section V). In Fig. 4a- 4c,
the purple curves represent the NE values for the scenario of
zero cost, i.e., αk = 0, which as demonstrated in the previous
subsection concludes to the optimal social welfare as well.
On the other hand the remaining three lines correspond to
more strict pricing for the users with bad channel gains, and
the last curve represents the centralized solution.
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By comparing the centralized solution with the other four
curves we notice that the central authority forces several
users (18 users in our scenario), especially the ones with bad
channel gains, to transmit only in the OFDMA channel in
order to reduce the interference in the NOMA transmission
band (Fig. 4b), thus introducing unfairness for some users in
accessing the NOMA available bandwidth. We also observe
from Fig. 4c that the utility obtained by those users is very
low, as opposed to the users with the lowest distance from the
BS. Note, that the users that treat the NOMA channel with
lower interference although having low splitting factors, they
enjoy higher utilities. Furthermore, comparing the four curves
that correspond to the decentralized solutions, we notice that
in Fig. 4c when there is no pricing (purple curve), the utilities
are significantly higher for the users with very bad channel
gains. In the case of zero pricing, we notice that the users
with either very good or very bad channel gains have signif-
icantly higher utilities than the users with medium channel
gains.

Nonetheless, with the use of appropriate pricing schemes,
we can spread the benefits stemming from the application
of the SIC technology in a more fair manner among the
users, instead of solely allowing the users with worse channel
gains to inflate the system. Indeed, when the exponent j in
distance based pricing factor αk = dj is increasing, we can
see that we obtain a more desirable curve, that corresponds
to an increase in the utility of those users with better channel
gains, who do not however increase notably the interference
of the system. Nevertheless, for exponents with high values
(e.g. greater than 5), the users with high distance from the BS
get very low utilities. That said, the network provider, could
appropriately select the values of pricing factors αk towards
trading interference, and thus network capacity, and fairness.

From the results in Fig. 4b we observe that, when there is
no pricing (purple curve) or when pricing is less aggressive,
that is αk = dk, the splitting factors follow a convex function
as users with high and low channel gains invest more in the
NOMA channel. On the other hand, when we increase the
exponent on the distance in the pricing factors, we see that
we motivate users with higher channel gains to invest more in
the NOMA channel as users with low channel gains do not
increase dramatically the introduced interference in this band.
In Fig. 4c we notice that both in the decentralized social wel-
fare optimal NE (purple curve) and in the centralized solution
(black curve), all users transmit with their highest possible
power. Moreover, when the exponent in the pricing factor
αk(dk) increases, under the operation of the decentralized
approach the willingness of the users with lower channel gains
to transmit with higher powers decreases as well.

One interesting observation is the occurrence of the spikes in
the corresponding utility curves in Fig. 4c, under the decentral-
ized approach when pricing is applied. These spikes occur for
the user with the lowest channel gain that however transmits
with its maximum transmission power. This is due to the fact
that the users with lower distance from the BS have true
maximum utilities way beyond the frontier of [0, pmax], [0, 1],
and they are forced to transmit with pmax only because it is
their boundary. On the other hand the user with the spiked

utility has true maximum that is near its pmax (but greater
than it) on the p-axis.

C. Satisfaction Form Game & ESE

In this section we provide a comparative analysis and
evaluation of the results obtained via the NE bases solution,
for the case where αk = d4

k and c = cbest, against the
corresponding outcomes resulting from the framework of
games in satisfaction form, as it was analyzed in section VI.
For the purposes of the evaluation, the thresholds required for
the operation of the framework of the games in satisfaction
form were based on the values of the utilities of the specific
NE point mentioned above. In particular, three different such
scenarios and operation points were studied and compared
against the aforementioned NE point. In a nutshell, the three
alternative scenarios under consideration are as follows:

• Each user k has threshold tk that is 95% of the corre-
sponding utility obtained at the NE.

• Each user k has threshold tk that is 85% of the corre-
sponding utility obtained at the NE.

• A mixed set of users is utilized, where half of them have
thresholds that are 95% of the obtained utilities at the
NE, while the remaining present higher thresholds, that
are 105% of the obtained utilities at the NE.

Accordingly, Fig. 5, presents the power allocation (Fig. 5a),
corresponding splitting factors xk (Fig. 5b) and the resulting
utilities (Fig. 5c) at the NE, and the corresponding ESE points,
for the three aforementioned scenarios. In Fig. 5a, we notice
that if the users applications required only 85% of the utility
gained at the NE (second scenario), the system would be
characterized by significantly higher efficiency, as each user
would decrease its transmission power. Lower but still notable
decrease in transmission powers are also observed even when
the users set thresholds at 95% of the corresponding utility
of the NE (i.e. first scenario). Furthermore, with respect to
the third scenario of mixed set of users, we observe that,
even the users that required higher utility thresholds than the
corresponding utilities at the NE point, managed to converge
to a point that satisfied them. More importantly, the latter hap-
pened while all the users in the system managed to decrease
their transmission power, no matter if they demanded - and
ultimately obtained - either 95% or 105% of the respective
utility experienced at the NE. In Fig. 5b we note that all
users, located after a specific distance from the BS, increase
their transmission power splitting factors in both the ESEs
with the lower QoS prerequisites, when compared with the
respective splitting factors at the NE point. This is expected
and justified, as those users realize that they can satisfy their
QoS prerequisites while transmitting with a lower power, only
by increasing their investments in the NOMA option.

Fig. 6 depicts the interference, as sensed at the receiver, for
each user (i.e., as a function of the distance from the BS).
As the QoS prerequisites diminish, the interference plummets.
Surprisingly, it is noted that when all the users request 85% of
the utility earned at the NE (that is a 15% drop in the values of
their utilities), the total interference drops by 93.38%, a factor
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Fig. 5. Power allocation, splitting factors and utilities at the ESE for each
user (function of user distance from the BS).

Fig. 6. Interference sensed, for each user, as a function of the user distance
from the BS.

that significantly contributes to an increase in the expected
capacity of the network.

VIII. CONCLUSION & FUTURE WORK

In this work, we transformed and properly modeled the
uplink power allocation problem in order to facilitate the
newly emerging 5G dual wireless multiple access paradigm,
where both OFDMA-based and NOMA-based transmission
options coexist, and users may utilize simultaneously both of
them. For that purpose, we initially enriched the mechanism
with a Shannon-based utility function towards letting the
users choose not only their transmission powers, but also the
percentage of their investment in the NOMA-based and/or
OFDMA-based transmissions. The resulting multi-variable
power allocation problem was treated and solved under three
different perspectives, namely: (i) Games in Normal Form
and NE, (ii) Optimization techniques targeting system social
welfare through a centralized optimal solution, and (iii) Games
in Satisfaction Form and ESE.

Based on these approaches, different solutions and stable
operation points were obtained, presenting different charac-
teristics and tradeoffs, both from the network provider and

the user perspectives. Numerical results achieved via modeling
and simulations, allowed the in depth evaluation and compar-
ison of the various obtained outcomes, in terms of the impact
and the interplay of SIC specific features, over-exploitation of,
and fairness in accessing, the NOMA-based bandwidth, and
interference treatment. Finally, in conclusion we confirmed
that using the satisfaction form games in order for the users
to converge to the ESE, provides a promising and appeal-
ing user-centric modeling approach to the power allocation
problem, as the system can adapt to the users’ application
needs, while at the same time eliminates a significant amount
of interference.

For setting the foundations of our framework, in this work
the basic communications setting that has been considered
consists of multiple users and a base station, thus, constructing
a single cell networking and communications environment.
Our goal is to extend this methodology to more complex
networking environments. Such an example would refer to the
consideration of a multi-cell environment, where the intracell
and intercell interference can be jointly studied in the trans-
mission power allocation problem through the games in satis-
faction form. In such a networking environment, problems like
users’ mobility impact can also be explored. It is interesting
to note that, given the operation of NOMA and SIC inher-
ent characteristics, when a user changes its position within
the network, thus, its corresponding channel gain conditions
change, it will affect the best response strategies of the users
with better channel conditions than its own. Capitalizing on
that, efficient and effective power allocation strategies within
the framework of satisfaction games may be devised.

Finally, as part of our current and future work, within the
adopted dual multiple access paradigm, we aim to enrich
the proposed holistic power allocation modeling approach,
by considering that users in reality present a risk aware
behavior. Towards this direction, the OFDMA option may be
treated as a safe resource, while the NOMA option can be
viewed as a Common Pool Resource, susceptible to failure.
To properly model and study the impact of users’ and system’s
behavior on the power allocation problem in this setting,
concepts from Prospect Theory and Tragedy of the Commons
can be adopted.
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