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Abstract—Artificial Intelligence (AI) based tech-
niques are typically used to model decision making in
terms of strategies and mechanisms that can result in
optimal payoffs for a number of interacting entities,
often presenting antagonistic behaviors. In this paper,
we propose an AI-enabled multi-access edge computing
(MEC) framework, supported by computing-equipped
Unmanned Aerial Vehicles (UAVs) to facilitate IoT
applications. Initially, the problem of determining the
IoT nodes optimal data offloading strategies to the
UAV-mounted MEC servers, while accounting for the
IoT nodes’ communication and computation overhead,
is formulated based on a game-theoretic model. The
existence of at least one Pure Nash Equilibrium (PNE)
point is shown by proving that the game is submodular.
Furthermore, different operation points (i.e. offload-
ing strategies) are obtained and studied, based either
on the outcome of Best Response Dynamics (BRD)
algorithm, or via alternative reinforcement learning
approaches (i.e. gradient ascent, log-linear, and Q-
learning algorithms), which explore and learn the en-
vironment towards determining the users’ stable data
offloading strategies. The corresponding outcomes and
inherent features of these approaches are critically com-
pared against each other, via modeling and simulation.

Index Terms—Edge Computing; Game Theory; Re-
inforcement Learning; Internet of Things;

I. Introduction

The rapid deployment of Internet of Things (IoT) de-
vices, such as sensors, smartphones, autonomous vehicles,
wearable smart devices, along with the recent advances in
the Artificial Intelligence (AI) and Reinforcement Learn-
ing (RL) techniques, have paved the way to a future of
using distributed edge computing to assist humans’ every-
day activities, in several domains such as transportation,
healthcare, public safety and others [1]. The ubiquity of
the IoT devices with enhanced sensing capabilities creates
increasingly large streams of data that need to be collected
and processed in an energy and time efficient manner.
Traditionally, Cloud-based solutions were utilized to

deal with the computational, storage, and networking
challenges imposed by the large streams of data. However,
Cloud computing faces great challenges related to energy
consumption, latency, and security, all of them being crit-
ical aspects for sensor-driven applications. On the other

hand, the emerging edge computing paradigm proposes
shifting the pendulum away from the traditional Cloud
computing model, towards a distributed infrastructure
model at the edge of the network, by offering computa-
tional resources closer to the physical location of data
producers/consumers [2].
Nevertheless, in order to fully unleash the autonomous

decision-making capabilities of the edge devices and users,
while exploiting the distributed edge computing capabil-
ities, there is an urgent need to push the AI frontiers
to the system’s edge [3]. AI mechanisms allow 5G net-
works to be predictive and proactive, which is essential
in making the 5G vision conceivable. Nowadays, AI has
extended its domain and strength, beyond the traditional
machine learning approaches, by being founded on multi-
disciplinary techniques, such as control theory, compu-
tationally light reinforcement learning techniques, game
theory, optimization theory, and meta-heuristics [4].
Motivated by the aforementioned observations and ar-

guments, in this paper, we propose an artificial intelligence
enabled multi-access edge computing (MEC) framework,
supported by computing-equipped Unmanned Aerial Vehi-
cles (UAVs) to facilitate IoT applications. The key problem
at hand is to properly explore and learn the environment
and the interdependence among the IoT nodes actions, so
that to determine their optimal data offloading strategies
to an UAV-mounted MEC server, while accounting for the
IoT nodes’ communication and computation overhead,

A. Related Work & Motivation
Distributed edge computing has been immensely sup-

ported by the adoption of UAV-mounted MEC servers [5],
due to the UAVs’ unique characteristics, i.e., fast, flexible,
and effortless deployment, mobility, maneuverability, line-
of-sight communication, etc. The problem of minimizing
the IoT devices’ communication and computation energy
consumption and the UAVs’ flying energy utilization is
studied in [6], by jointly optimizing the devices’ data
offloading, transmission power, and the UAVs’ trajectory.
In [7], the problem of partial data offloading from the IoT
devices to ground or UAV-mounted MEC servers is studied
in order the devices to satisfy their minimum Quality
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of Service (QoS) prerequisites, by adopting the novel
concept of Satisfaction Equilibrium. n [8], the authors
target at UAVs energy-efficiency, by jointly optimizing
their hovering time, and the devices’ scheduling and data
offloading, while considering the constraints of the UAVs’
computation capability and the devices’ QoS constraints.
A similar problem is studied in [9] by exploiting the
uplink and downlink communication among the devices
and the UAVs in terms of data offloading/receiving data
respectively, while guaranteeing the energy efficient oper-
ation of the overall system. In [10], the problem of jointly
optimizing the devices’ association, transmission power,
and data offloading to the UAVs, as well as the UAVs’
trajectory is studied, aiming at minimizing the overall
power consumption in the system.
A techno-economics approach is presented in [11], where

the UAVs charge fees the users for the computation ser-
vices that they offer to them. Also, the UAVs charge
their battery over a microwave station and the authors
target at maximizing the UAVs’ utility by optimizing their
trajectories and the data offloading process. In [12], the
UAVs act as cache and edge computing nodes, and two
sequentially solved optimization problems are considered,
to minimize the communication and computation delay
and maximize the energy efficiency of the system. In [13],
the UAVs act both as MEC servers and as wireless power
transfer nodes charging the IoT devices. The problem
of maximizing the UAVs’ computation rate is examined
under the UAVs’ energy provision and speed constraints.
However, despite the significant research work and ad-

vances achieved by the aforementioned research efforts, the
problem of the IoT devices’ distributed and autonomous
decision-making with respect to their data offloading
strategies, has not yet been fully exploited, especially
under the the prism of artificial intelligence. In this paper,
a field of IoT devices is considered supporting latency and
energy sensitive IoT applications. Accordingly each IoT
device has the option to execute its computation task
either locally or offload part of it to a UAV-mounted
MEC server, by considering the joint optimization of the
involved communication and computation overhead. The
focus of this paper is placed on the design of an artificial
intelligence-enabled framework that drives the strategic
decision of optimal data offloading to the available UAV-
mounted MEC server, founded on on the power and
principles of Game Theory and Reinforcement Learning.

B. Contributions & Outline

The key technical contributions of this research work
are summarized as follows.

• The IoT devices’ communication, computation and
energy overhead due to data offloading is properly
captured and modeled (Section II), while based on
this, the utility of each device by offloading and
processing its computation task’s data to the UAV-

mounted MEC server is reflected in representative
functions (Section III).

• A non-cooperative game is formulated among the
IoT devices aiming at maximizing their own utility
at every timeslot, while considering the experienced
communication and computation time overhead, from
offloading and processing their data at the UAV
(Section IV-A). This process enables the devices to
learn from history, scrutinize the performance of other
nodes, and adjust their own behavior accordingly.
The existence of at least one Pure Nash Equilibrium
(PNE) point is shown by proving that the game is
submodular (Section IV-B). A best response dynam-
ics approach is introduced that converges to a PNE
(Section IV-C).

• Different operation points (i.e. offloading strategies)
are obtained and studied, based on alternative rein-
forcement learning approaches (i.e. gradient ascent,
log-linear, and Q-learning algorithms), which explore
and learn the environment towards determining the
users’ stable data offloading strategies (Section V).
The operation and convergence strategies realized by
the various reinforcement algorithms, are critically
compared against each other and against the corre-
sponding one at the PNE point (Section VI).

II. Communication & Computation Overhead

A distributed edge computing system is considered con-
sisting of a set of IoT devices D = {1, . . . , d, . . . , |D|}
spread in an area x[m]× y[m] and a UAV-mounted MEC
server hovering above the area. Each IoT device has a
computation task T (t)

d to be completed at timeslot t,
which is defined as T (t)

d = (I(t)
d , φ

(t)
d ), where I

(t)
d [bits]

denotes the total amount of data of the IoT device’s
computation task, and the parameter φ

(t)
d [

CP U−Cycles
bit ]

represents the computation intensity of the device’s task
(i.e., a higher value of φ

(t)
d expresses a more computing

demanding application). At each timeslot t, each IoT
device offloads part of its computation task’s data to the
UAV-mounted MEC server for further processing, while
aiming at minimizing its experienced communication and
computation latency and energy cost. The IoT device’s d
set of data offloading strategies at timeslot t is denoted as
A

(t)
d = {a

(t)
d,min, . . . , a

(t)
d,j , . . . , a

(t)
d,max}, where a

(t)
d,j ∈ [0, 1]

is a percentage of the overall amount of the device’s
computation task’s data.
Moreover, a non-orthogonal multiple access (NOMA)-

based wireless communication environment is considered
to enable each IoT device to offload its computation task’s
data a

(t)
d,j · I

(t)
d [bits] to the UAV at each timeslot t. Also,

the Successive Interference Cancellation (SIC) technique
is implemented at the UAV to improve the interference
management in the congested IoT environment [14]. Each
IoT device’s d uplink data rate to the UAV-mounted
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MEC server at each timeslot t is calculated through the
Shannon’s formula, as follows.

R
(t)
d = W · log(1 + p

(t)
d · g

(t)
d

σ2
o +

|D|∑

d′≥d+1
p

(t)
d′ · g

(t)
d′

) (1)

where W [Hz] is the system’s bandwidth, p
(t)
d is the de-

vice’s transmission power, and g
(t)
d is the device’s channel

gain to communicate with the UAV at the timeslot t.
Each device’s transmission power is considered fixed in
the following analysis and its absolute value depends on
its hardware characteristics. Also, following the NOMA
and SIC principles, without loss of generality, we consider
g

(t)
|D| ≤ · · · ≤ g

(t)
d ≤ . . . g

(t)
1 , thus, the interference that the

IoT device d experiences is σ2
o +

|D|∑

d′≥d+1
p

(t)
d′ · g

(t)
d′ , where σ2

o

is the variance of the Additive White Gaussian Noise.
The UAV-mounted MEC server is assumed to have a

computation capability FUAV [CP U−Cycles
sec ] that is shared

among the IoT devices to process their offloaded data.
Also, the UAV can process in parallel a total amount of
data BUAV [bits] at each timeslot. Based on the above,
the time overhead that the IoT device d experiences at
timeslot t by offloading a

(t)
d,j · I

(t)
d is given as follows [15]:

O
(t)
time,d =

a
(t)
d,j · I

(t)
d

R
(t)
d

+
φ

(t)
d · a

(t)
d,j · I

(t)
d

[1−

∑

d′ �=d

a
(t)
d′,j′ ·I(t)

d′

BUAV
] · FUAV

(2)

The first term of Eq.2 represents the communication time
overhead that the IoT device experiences to offload its
data to the UAV, while the second term captures the
experienced computation time overhead. Also, as it is
observed by the denominator of the second term in Eq.2,
each IoT device exploits only a portion of the UAV’s
computation capability, as the latter is shared in a fair
manner among the IoT devices.
Furthermore, the energy overhead that each IoT device

experiences by offloading its computation task’s data to
the UAV at timeslot t is given as follows.

O
(t)
energy,d =

a
(t)
d,j · I

(t)
d

R
(t)
d

· p
(t)
d (3)

The duration of a timeslot t is assumed T [sec] and the
energy availability of an IoT device d at timeslot t is e

(t)
d [J ].

Based on Eq.2, 3, the total normalized overhead that the
IoT device d experiences at timeslot t is given as follows.

O
(t)
d =

O
(t)
time,d

T
+

O
(t)
energy,d

e
(t)
d

(4)

III. IoT Devices Utilities

In the introduced artificial intelligence-enabled dis-
tributed edge computing framework each IoT device per-
ceives a satisfaction by processing its data to the UAV-
mounted MEC server, as well as a cost due to the time and

energy overhead that it experiences. Moreover, each IoT
device’s experienced satisfaction and cost are dynamically
interdependent with the data offloading strategies of the
rest of the devices in the examined system. Thus, a
holistic utility function is introduced for each IoT device
to capture its perceived satisfaction and cost of processing
its computation task in the considered distributed edge
computing system, as follows.

U
(t)
d (a

(t)
d,j , a

(t)
−d,j) = b · e

a
(t)
d,j∑

∀d′ �=d,d′∈D

a
(t)
d′,j′

− c · eO
(t)
d (5)

where a
(t)
−d,j is the data offloading strategy vector of all

the devices residing in the examined system except for the
IoT device d. Also, the weights b, c ∈ [0, 1] are configurable
parameters representing how much the IoT device weighs
the satisfaction that it receives by processing its data
at the UAV (first term of Eq.5), as compared to the
corresponding cost to perform this action (second term of
Eq.5). Moreover, given that small changes in the devices’
data offloading strategies can dramatically influence the
stable operation of the distributed edge computing system
due to the large number of devices, we have adopted the
exponential form to capture the devices’ satisfaction and
cost tradeoffs and trends in Eq.5.

IV. Game-theoretic Edge Distributed

Computing

In this section, we cast the IoT devices’ distributed data
offloading problem into the analytical framework of non-
cooperative game theory. Initially, the non-cooperative
data offloading game among the IoT devices is formulated,
while subsequently an analytical solution is provided to
determine a Pure Nash Equilibrium point of the game.

A. Problem Formulation
Each IoT device aims at maximizing its perceived util-

ity, as expressed in Eq.5, at each timeslot in order to im-
prove its perceived benefit from offloading and processing
its data at the UAV-mounted MEC server, while miti-
gating its personal cost, as expressed by its experienced
overhead (Eq.4). Thus, the corresponding optimization
problem for each IoT device, is expressed as the maxi-
mization of each IoT device’s utility, as follows.

maxU
(t)
d (a

(t)
d,j , a

(t)
−d,j) = b · e

a
(t)
d,j∑

∀d′ �=d,d′∈D

a
(t)
d′,j′

− c · eO
(t)
d

s.t. a
(t)
d,j ∈ A

(t)
d

(6)

Based on the maximization problem in Eq.6, we ob-
serve that the IoT devices’ data offloading strategies are
interdependent, and the devices demonstrate competitive
behavior in terms of exploiting the UAV’s computing
capabilities. Thus, the utility maximization problem in
Eq.6 is confronted as a non-cooperative game among the
IoT devices. Let G = [D, {A

(t)
d }d∈D, {U

(t)
d }d∈D] denote the
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Distributed Data Offloading (DDO) game played among
the IoT device’s at each timeslot t, where as mentioned
before D is the set of IoT devices, A

(t)
d is the data

offloading strategy set of each device d ∈ D, and U
(t)
d

denotes the device’s utility.
The solution of the DDO game should determine an

equilibrium point, where the IoT devices have maximized
their perceived utility by selecting their optimal data
offloading strategy a

(t)∗
d,j . If the DDO game has a feasible

PNE point, then at that point, no device has the incentive
to unilaterally change its equilibrium data offloading strat-
egy a

(t)∗
d,j , given the strategies of the rest of the devices,

as it cannot furhter improve its perceived utility. More
precisely, the PNE of the non-cooperative DDO game is
defined as follows.

Definition 1. (Pure Nash Equilibirum) The data
offloading vector a(t)∗ = (a(t)∗

1,j′ , . . . , a
(t)∗
|D|,j′), a

(t)∗
d,j ∈ A

(t)
d ,

is a PNE of the DDO game if for every IoT device d
the following condition holds true: U

(t)
d (a

(t)∗
d,j , a

(t)∗
−d,j) ≥

U
(t)
d (a

(t)
d,j , a

(t)∗
−d,j) for all , a

(t)
d,j ∈ A

(t)
d .

Based on Definition 1, we conclude that the existence of
a PNE in the DDO game guarantees the stable operation
of the distributed edge computing system, while the IoT
devices maximize their perceived utility. On the other
hand, if the DDO game does not have at least one PNE,
that is translated to an unsteady and unstable state of the
examined system.

B. Problem Solution
The theroy of S-modular games is adopted in order to

show the existence of at least one PNE for the DDO game
[16]. Specifically, we show that the DDO game is submodu-
lar, which means that when an IoT device tends to offload
a large amount of data to the UAV-mounted MEC server,
the rest of the devices follow the exact opposite philosophy,
i.e., they become more conservative in terms of their data
offloading, as the MEC server is congested with tasks.
Thus, in general a submodular game is characterized by
strategic substitutes and has at least one PNE [16], [17].
Considering the DDO game with strategy space A

(t)
d , we

can prove the following theorem.

Theorem 1. (Submodular Game) The DDO game G =
[D, {A

(t)
d }d∈D, {U

(t)
d }d∈D] is submodular of for all d ∈ D

the following conditions hold true:
(i) ∀d ∈ D, A

(t)
d is a compact subset of the Euclidean

space.
(ii) U

(t)
d is smooth in A

(t)
d and has non-increasing differ-

ences, i.e., ∂2U
(t)
d

∂a
(t)
d,j

·∂a
(t)
d′,j′

≤ 0, ∀d, d′ ∈ D, d �= d′, ∀j, j′.

Proof. Towards proving that the DDO game is submod-
ular, we consider that the IoT device can partition its
task in any feasible set of data and offload them to
the UAV-mounted MEC server. Thus, the strategy space

A
(t)
d = (0, 1] is continuous and a compact subset of the
Euclidean space and U

(t)
d is a smooth function. Also we

have: ∂2U
(t)
d

∂a
(t)
d,j

·∂a
(t)
d′,j′

= b · λ − c · μ where we set λ =

e

a
(t)
d,j∑

∀d′ �=d,d′∈D

a
(t)
d′,j′

·( −1
(

∑

∀d′ �=d,d′∈D

a
(t)
d′,j′ )2 +

−1
(

∑

∀d′ �=d,d′∈D

a
(t)
d′,j′ )3 ·a(t)

d,j)

and μ = eO
(t)
d · ( φ

(t)
d

·I(t)
d

·
I

(t)
d′

BUAV

[1−

∑

d′ �=d

a
(t)
d′,j′ ·I

(t)
d′

BUAV
]2·FUAV ∗T

) · (1 + O
(t)
d ).

Thus, we observe that λ < 0 and μ > 0. Therefore,
we conclude that ∂2U

(t)
d

∂a
(t)
d,j

·∂a
(t)
d′,j′

< 0 and the DDO game is
submodular. �

Consequently, taking into account that a submodular
game has a non-empty set of Pure Nash Equilibrium points
[16], [17], we conclude that the DDO game has at least one
PNE a(t)∗ = (a(t)∗

1,j′ , . . . , a
(t)∗
|D|,j′), a

(t)∗
d,j ).

C. Best Response Dynamics
Towards determining the PNE of the DDO game, the

Best Response Dynamics (BRD) method is adopted. The
BRD is a natural method by which the IoT devices proceed
to a PNE via a local search method. However, it is noted
that the quality of the PNE depends on the order that
the IoT devices update their data offloading strategies. In
this research work, we consider an asynchronous BRD al-
gorithm, where all the IoT devices update simultaneously
their data offloading strategies.
The best response strategy of each IoT device is defined

as follows.

BRd(a(t)∗
−d,j) = a

(t)∗
d,j = argmax

a
(t)
d,j

∈A
(t)
d

U
(t)
d (a

(t)
d,j , a

(t)
−d,j) (7)

In a nutshell, the asynchronous BRD algorithm that
determines a PNE of the DDO game is described in
Algorithm 1. The complexity of the asynchronous BRD
algorithm is O(|D|·Ite), |D| >> Ite, where Ite is the total
number of iterations in order the algorithm to converge
to the PNE. In Section VI-A indicative numerical results
in terms of the required number of iterations (and actual
time) required for convergence are presented.

V. Reinforcement Learning-enabled Edge

Distributed Computing

In this section, an artificial intelligence approach is
introduced based on reinforcement learning algorithms to
enable the IoT devices to determine their stable data
offloading strategies, while mitigating their experienced
overhead. The need for adopting these learning approaches
versus the game-theoretic model (as expressed via the
BRD framework), arises in several realistic cases including
the ones where: a) the devices are not fully aware of the
closed-form solution (Eq. 7), and/or b) the devices’ data
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Algorithm 1 Asynchronous BRD Algorithm

1: Input: D, C
(t)
d , p

(t)
d , e

(t)
d T , A

(t)
d , ∀d ∈ D

2: Output: Pure Nash Equilibrium: a(t)∗

3: Initialization: ite = 0, Convergence = 0, a(t)|ite=0
4: while Convergence == 0 do
5: ite = ite+ 1;
6: for d = 1 to |D| do
7: Each IoT device d determines a

(t)∗
d,j |ite

w.r.t. a
(t)∗
−d,j|ite(Eq.7) and receives

U
(t,ite)
d (a(t)∗

d,j |ite, a
(t)∗
−d,j|ite)

8: end for
9: if a

(t)∗
d,j |ite = a

(t)∗
d,j |ite−1 then

10: Convergence = 1
11: end if
12: end while

offloading strategy space A
(t)
d is discrete (rather than being

continuous as assumed in the game-theoretic model). In
particular, three different sets of reinforcement learning
algorithms are examined, namely the gradient ascent, log-
linear, and Q-learning, and their inherent properties are
exploited. More importantly, their convergence to a data
offloading strategy set for all the IoT devices, is critically
compared against the corresponding ones at the PNE
point, obtained through the BRD algorithm under the
game-theoretic framework introduced in Section IV.

A. Gradient Ascent Learning
In the gradient ascent reinforcement learning approach,

the IoT devices act as Learning Automata (LA) and they
learn their environment by performing gradient updates
of their perceived utility. Each device’s data offloading
decisions are characterized by an action probability vector
P(ite)

d = [P (ite)
a

(t)
d,min

, . . . , P
(ite)
a

(t)
d,j

, . . . , P
(ite)
a

(t)
d,max

]. At each itera-
tion of the gradient ascent algorithm, each device prob-
abilistically chooses its potential data offloading strategy.
The IoT devices make their stable data offloading decision,
if P (ite)

a
(t)
d,j

≥ Pthres, ∀d ∈ D, where Pthres is a threshold value
of the action probability. The most commonly applied gra-
dient ascent learning algorithm is called Linear Reward-
Inaction (LRI) and the corresponding action probability
updating rule is given as follows [18].

P
(ite+1)
a

(t)
d,j

= P
(ite)
a

(t)
d,j

+ η
ˆ[U (t)
d ]

(ite)
(1− P

(ite)
a

(t)
d,j

),

if a
(t)
d,j |ite = a

(t)
d,j |ite+1

(8a)

P
(ite+1)
a

(t)
d,j

= P
(ite)
a

(t)
d,j

− η
ˆ[U (t)
d ]

(ite)
P

(ite)
a

(t)
d,j

,

if a
(t)
d,j |ite �= a

(t)
d,j |ite+1

(8b)

where η ∈ (0, 1] is the learning rate of the IoT devices. For
large values of the learning rate η, the IoT devices explore
less thoroughly their available data offloading strategies,
thus they converge fast to their stable decisions, however,

they achieve lower utility. The exact opposite holds true
for small values of the learning rate. The reward that
each device receives by its data offloading decision at each
iteration ite of the LRI algorithm is the normalized utility
ˆ[U (t)
d ]

(ite)
= [U(t)

d
](ite)

∑

d∈D

[U(t)
d

](ite) .

B. Log-Linear Learning
The log-linear learning algorithms enable the IoT de-

vices to converge to the best PNE with high probability
compared to gradient ascent learning algorithms that
simply allow the devices to explore their distributed edge
computing environment. Furthermore, the log-linear learn-
ing algorithms allow the IoT devices to deviate from their
probabilistically optimal decisions and make some subopti-
mal decisions in order to thoroughly explore their available
data offloading action space. An indicative log-linear learn-
ing algorithm is the Binary Log-Linear Learning (BLLL)
algorithm. In BLLL algorithm, each IoT device initially
selects a data offloading strategy among the available ones,
with equal probability for each one, i.e., P

(ite=0)
a

(t)
d,j

= 1
|A(t)

d
| .

Then, at each iteration ite of the BLLL algorithm, one
IoT device is randomly selected to perform exploration
and learning. At the exploration phase, the device selects
an alternative data offloading strategy a

(t)
d,j′ |ite and receives

the corresponding utility [U (t)
d ]′(ite). At the learning phase,

the IoT device updates its data offloading strategy based
on the following probabilistic rule.

P
(ite+1)
a

(t)
d,j

= e[U(t)
d

]′(ite)·β

e[U(t)
d

]′(ite)·β + e[U(t)
d

](ite)·β
,

if a
(t)
d,j |ite+1 = a

(t)
d,j′ |ite

(9a)

P
(ite+1)
a

(t)
d,j

= e[U(t)
d

](ite)·β

e[U(t)
d

]′(ite)·β + e[U(t)
d

](ite)·β
,

if a
(t)
d,j |ite+1 �= a

(t)
d,j′ |ite

(9b)

where β ∈ R
+ is the learning parameter and for large

values of β the IoT devices explore more thoroughly their
available data offloading strategies. The BLLL algorithm
converges when the summation of the devices’ perceived
utilities remain approximately the same for a very small
number of K consecutive iterations.

C. Q-Learning
An alternative reinforcement learning approach, known

as stateless Q-Learning, is studied in this subsection. The
stateless Q-Learning utilizes the stochastic approximation
methods in order to allow the IoT devices to explore and
learn their environment by following a Markov Decision
Process (MDP) policy, thus converging eventually to their
stable data offloading decisions. Specifically, each IoT
device d preserves an action values vector Q

(ite)
d (a) =

[Q(ite)
a

(t)
d,min

, . . . , Q
(ite)
a

(t)
d,j

, . . . , Q
(ite)
a

(t)
d,max

], where Q
(ite)
a

(t)
d,j

denotes the
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estimated value of that action a
(t)
d,j up to the iteration ite,

i.e., it depicts the expected utility U
(t,ite)
d given that a

(t)
d,j

is selected:
Q

(ite)
a

(t)
d,j

∼= E[U (t,ite)
d |a(t)

d,j |ite] (10)

An indicative way to estimate the aforementioned Q
(ite)
a

(t)
d,j

value is based on the following standard Q-Learning up-
date rule which is given as follows.

Q
(ite)
a

(t)
d,j

= Q
(ite)
a

(t)
d,j

+ θ · (U (t,ite)
d − Q

(ite)
a

(t)
d,j

) (11)

where θ ∈ (0, 1] is the learning parameter. Since each IoT
device selects an offloading strategy at each iteration ite,
we introduce the widely used action selection rule known
as the greedy approach. According to the greedy rule,
the IoT devices select the offloading strategies with the
highest expected utility (Eq.12), thus they only exploit
the knowledge that is acquired up to the iteration ite.

a
(t)
d,j |ite+1 = argmax

a
(t)
d,j

∈A
(t)
d

Q
(ite)
d (a) (12)

Additionally, we also examine an alternative action
selection approach named ε-greedy. Under the ε-greedy
approach, the IoT devices perform exploration with prob-
ability ε by selecting another data offloading strategy
with equal probability 1

|A(t)
d

|−1
other than the one that

maximizes their expected utility. For ε = 0, the ε-greedy
approach is equivalent to the greedy approach.

VI. Numerical Results

In this section, indicative numerical results are pre-
sented to illustrate the performance of the proposed
artificial intelligence-enabled distributed edge computing
framework (Section VI-A). A detailed comparative anal-
ysis is performed to gain insight about the behavior of
the different learning and exploitation approaches adopted
in this paper, by highlighting the drawbacks and benefits
of the BRD model versus the examined reinforcement
learning approaches (Section VI-B). Additional discussions
regarding the robustness and applicability of the proposed
learning methods are provided in Section VI-C.
We consider an environment consisting of |D| = 250

IoT devices, where each IoT device’s distance from the
UAV-mounted MEC server is randomly and uniformly
distributed in the interval (10m, 400m). The simulation
parameters are as follows: I

(t)
d ∈ [20, 100]MBytes, C

(t)
d ∈

[1, 5] · 109CPUcycles, φ
(t)
d = C

(t)
d

I
(t)
d

, p
(t)
d ∈ [1.2, 2]Watts,

W = 5MHz, b = 0.74, c = 0.0043, BUAV ≥
∑

d∈D

I
(t)
d

and FUAV = 15 ·109 CP Ucycles
sec . Unless otherwise explicitly

stated, we consider a
(t)
d,min ∈ (0, 0.2], a

(t)
d,max ∈ [0.8, 1.0]

with an intermediate step of 0.05, η = 0.3, β = 1000
and θ = 0.6. The proposed framework’s evaluation was
conducted via modeling and simulation and was executed
in a MacBook Pro Laptop, 2.5GHz Intel Core i7, with
16GB LPDDR3 available RAM.
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Fig. 1: Best Response Dynamics
A. Pure Operation Performance
In this subsection, we examine the operation perfor-

mance of the proposed artificial framework under the
game-theoretic and the reinforcement learning models, in
terms of: the IoT devices’ data offloading strategies, the
corresponding experienced overhead and utility, the overall
system’s achieved social welfare, as well as the required
iterations and time (execution time) for convergence.
In particular, Fig.1a presents the IoT devices’ average

offloaded data to the UAV and the corresponding expe-
rienced overhead as a function of the BRD algorithm’s
iterations and real execution time (lower and upper hori-
zontal axis respectively). The results reveal that the BRD
algorithm converges fast to a PNE (i.e., practically in less
than 4 iterations, equivalent to 0.18 sec). Also, the IoT
devices converge to a PNE, where they experience low
average overhead (Fig.1a) and high levels of utility (Fig.
1b). Moreover, by studying the BRD framework from the
system’s perspective, we observe that at the PNE high
levels of social welfare are obtained (Fig.1b).
Fig.2a presents the convergence of the data offload-

ing strategies of one indicative IoT device to a stable
data offloading decision following the LRI algorithm. It
is observed that the devices’ data offloading converge to
a stable decision in less than 100 iterations i.e., 0.32
sec. Also, Fig. 2b, 2c present the convergence of the
IoT devices’ average offloaded data, overhead, and utility,
as well as the system’s social welfare. The results show
that the IoT devices learn in a distributed manner their
surrounding environment and they strategically decide
their data offloading strategies in order to achieve low
overhead and high utility, while collectively enjoy high
levels of social welfare. Furthermore, the results presented
in Fig.2d, reveal that for increasing values of the learning
parameter η, the devices learn faster their environment
and make a data offloading decision. However, this comes
at the cost of lower achieved utility, as they underexplore
their available data offloading decisions.
Fig.3a-3d examine the behavior of the BLLL algorithm,

for different values of the learning parameter β, as a
function of the iterations and the real execution time. The
results show that the BLLL algorithm converges to the
PNE with high probability, bearing however the cost of
longer convergence time. Thus, the IoT devices converge
close to the PNE and they achieve high utility levels
(Fig.3b), and low overhead (Fig.3d), while intelligently
deciding their data offloading strategies (Fig.3c). Further-
more, the system converges to high levels of social welfare
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Fig. 2: Gradient Ascent Reinforcement Learning Framework
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Fig. 3: Log-Linear Reinforcement Learning Framework
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Fig. 4: Q-Learning Framework
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Fig. 5: Comparative Evaluation of the Reinforcement Learning Methods

(Fig.3a). Moreover, it is observed that better results are
achieved for higher values of the learning parameter β.
Similarly, Fig.4a-4d present the corresponding operation

performance of the Q-learning approach, i.e., both the
greedy and the ε-greedy. The results reveal that the Q-
learning algorithms converge to stable data offloading deci-
sions for all the IoT devices (Fig.4c) achieving high utilities
(Fig.4b), low overhead (Fig.4d), and high social welfare
values (Fig.4a). It is also observed that the ε-greedy
algorithm by allowing with small probability (ε = 0.01)
the IoT devices to explore other data offloading strategies
than the ones that maximize the expected utilities, achieve
the best results among the different Q-learning implemen-
tations. This is due to the fact that the IoT devices can
explore alternative actions compared to the greedy Q-
learning algorithm (ε = 0) where they myopically choose
the strategies that offer them the maximum expected
utility. On the other hand, if the devices overexplore
alternative strategies, i.e., ε = 0.1, they deviate from good
outcomes, being ”lost” in the exploration phase.

B. Comparative Evaluation
In this subsection, a comparative evaluation among the

examined learning models (i.e. game theoretic model and
reinforcement learning ones) utilized to determine the IoT
devices’ data offloading strategies is performed. Fig.5a-5c
present the system’s social welfare, the social welfare’s

mean square error with respect to the the BRD model,
and the execution time of all the examined algorithms,
respectively. The results reveal that the game-theoretic
model - as reflected by the BRD algorithm - illustrates
the best results, both in terms of achieved social welfare
and execution time. Then, the BLLL algorithm achieves
the highest social welfare among all the reinforcement
learning algorithms, given its inherent attribute to con-
verge to a PNE with high probability. On the other
hand, the LRI approach, given its simplistic action update
rule (Eq.8a,8b) converges fast (Fig.5c) to a stable data
offloading vector for all the IoT devices, while sacrificing
the achieved welfare (Fig.5a). The Q-Learning approaches,
i.e., ε = 0, 0.01, 0.1 illustrate similar execution time
(Fig.5c) and high levels of social welfare (Fig.5a) with
the BRD algorithm’s PNE outcome. In a nutshell, based
on the results in Fig.5b, we observe that the smallest
mean square error of the social welfare with respect to
the BRD algorithm’s outcome is achieved by the BLLL
algorithm and then by the ε-greedy Q-learning algorithms
with ε = 0.01 and ε = 0.1, respectively.

C. Discussion on Learning Methods Applicability
In the following a detailed analysis of the BLLL learning

approach operation is performed, with respect to the strat-
egy space size available to the IoT devices (i.e., available
number of actions). The BLLL approach is selected as it
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Fig. 6: Evaluation for various strategy space sizes

demonstrated the best results among all the examined
reinforcement learning frameworks. Fig.6a presents the
mean square error of the BLLL algorithm’s achieved social
welfare compared to the outcome of the BRD algorithm for
20, 100, 1, 000, 10, 000 data offloading strategies, while
Fig.6b shows the corresponding execution time of the
BLLL algorithm. The results illustrate that as the devices’
strategy space increases, the achieved social welfare by the
BLLL algorithm approaches the corresponding one by the
BRD algorithm, at the cost of increased execution time.
Based on the results provided in the latter two subsec-

tions, we observe that, the game-theoretic BRD algorithm
converges to better results both from the devices’ and
the system’s perspective, primarily due to the use of the
closed-form used to determine the PNE (Eq. 7). Neverthe-
less, this requires that the devices are aware of the closed-
form solution or can extrapolate it, which bears additional
overhead. The reinforcement learning algorithms on the
other hand, eliminate this assumption, by enabling the
devices to learn their environment without having a priori
knowledge of the optimal strategy rule. Last but not least,
it should be noted that the reinforcement learning ap-
proaches can be better applied in realistic cases where the
devices’ strategy space is not continuous as considered in
the game-theoretic model (i.e the devices may arbitrarily
select any percentage of their data to offload), but instead
the devices are allowed to select their data offloading
strategies from a discrete predefined strategy space.

VII. Conclusions

In this paper, an artificial intelligence-enabled dis-
tributed edge computing framework is proposed, by ex-
ploiting the computing capabilities of a UAV-mounted
MEC server. The communication and computation over-
head experienced by the IoT devices is modeled, and
appropriate utility functions are designed for the IoT
devices to measure their satisfaction from offloading their
computation tasks. A non-cooperative game is formulated
among the IoT devices and its PNE, i.e., devices’ optimal
data offloading strategies, is determined following the
theory of submodular games. Alternative reinforcement
learning algorithms are adopted, i.e., gradient ascent, log-
linear, and Q-learning, to determine the devices’ stable
data offloading strategies. Detailed numerical results are
presented that demonstrate the operational characteristics
and performance of the different models and algorithms,
while they are compared against each other. Part of our
future work is to extend and evaluate the presented frame-
work, while considering a multi-UAV-mounted servers

setup, where the IoT devices can exploit the different
computation choices of the environment.
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