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Abstract—In this paper, a novel data offloading decision-making framework is proposed, where users have the option to partially
offload their data to a complex Multi-access Edge Computing (MEC) environment, consisting of both ground and UAV-mounted MEC
servers. The problem is treated under the perspective of risk-aware user behavior as captured via prospect-theoretic utility functions,
while accounting for the inherent computing environment uncertainties. The UAV-mounted MEC servers act as a common pool of
resources with potentially superior but uncertain payoff for the users, while the local computation and ground server alternatives
constitute safe and guaranteed options, respectively. The optimal user task offloading to the available computing choices is formulated
as a maximization problem of each user’s satisfaction, and confronted as a non-cooperative game. The existence and uniqueness of a
Pure Nash Equilibrium (PNE) are proven, and convergence to the PNE is shown. Detailed numerical results highlight the convergence

of the system to the PNE in few only iterations, while the impact of user behavior heterogeneity is evaluated. The introduced
framework’s consideration of the user risk-aware characteristics and computing uncertainties, results to a sophisticated exploitation
of the system resources, which in turn leads to superior users’ experienced performance compared to alternative approaches.

Index Terms—Data offloading, multi-access edge computing, unmanned aerial vehicles, risk-aware behavior, computing uncertainty,

prospect theory, convex optimization
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1 INTRODUCTION

NMANNED Aerial Vehicles (UAVs) have gained increas-
Uing research and commercial popularity due to their
salient attributes, such as flexible deployment, mobility,
strong line-of-sight connection links, low-cost, adjustable
usage, maneuverability, and hovering ability. Their vital
features have enabled them to support not only various mil-
itary applications, but several civilian services as well,
including transportation, industrial monitoring, agriculture
services, forest fire monitoring, wireless services. For
instance, focusing on the latter, the UAVs have been used
among others to enhance the coverage and capacity of the
wireless cellular networks, act as flying base stations, and
support Internet of Things (IoT) communications in smart
cities environments [1]. Also, over the last few years, the
UAVs have been considered as means to provide comput-
ing support to the end-users by acting as UAV-mounted
multi-access edge computing servers [2]. The concept of
multi-access edge computing (MEC), formerly known as
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mobile edge computing, is a network architecture concept,
standardized by the European Telecommunications Stand-
ards Institute (ETSI), offering cloud-computing capabilities
at the edge of the access network [3].

1.1 Related Work & Motivation

Very recently (2018), the use of UAV-mounted MEC serv-
ers has been proposed in combination with the ground
MEC servers to support end-users’ applications’ offloading
in order to perform computationally intensive tasks, thus,
collectively creating a fog computing system [4]. In [5], the
authors investigate the stability of a cloud-based UAV sys-
tem consisting of UAV-mounted MEC servers, in relation-
ship with the acquisition rate of sensors’ big data. An
air-ground integrated MEC architecture is introduced in
[6] consisting of both ground and UAV-mounted MEC
servers. The authors highlight the benefits of the UAV-
assisted network in terms of edge caching and computing.
In [7], the authors consider clusters of UAV-mounted MEC
servers and the problem of opportunistic computational
offloading is studied to determine the tasks that should be
offloaded to the neighboring UAV clusters with sufficient
computing resources, in order to increase the UAVs’ life-
time and decrease the overall computation time.

Focusing on the problem of users’ computation tasks off-
loading to UAV-mounted MEC servers, the authors in [8]
propose an UAV-enabled MEC system, where the UAVs
act jointly as relay and data processing nodes to facilitate
the communication and computing demands of the ground
devices. A joint optimization problem is formulated to
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minimize the service delay of the ground devices and the
UAVs by determining the UAVs optimal position, the com-
munication and computing resource allocation, and the
devices’ task splitting. A centralized task offloading
approach to the UAV-mounted and ground MEC servers is
introduced in [9], where an intelligent centralized agent
makes optimal decisions about the users’ task offloading
strategies via sensing the communication and computing
conditions of the environment towards optimizing the
users’ Quality of Experience. The authors in [10] introduce
an optimization algorithm to jointly optimize the task off-
loading, the bit allocation during transmission, and the
UAV trajectory. A similar problem is studied in [11], where
the amount of offloaded bits to be processed by the UAVs,
as well as the number of output bits returned to the users in
the downlink, are jointly optimized, while taking into con-
sideration the users’ maximum latency constraints. This
research work has been extended in [2] to consider orthogo-
nal and non-orthogonal multiple access techniques to off-
load the users’ data to the UAV-mounted MEC servers, as
well as to optimize the UAVs’ trajectory subject to their
energy budget constraints.

In [12], the UAV-mounted MEC servers’ energy saving is
studied by jointly optimizing the UAVs trajectory and data
offloading to ground MEC servers based on a long short
term memory prediction algorithm. In [13], the UAVs
energy efficient operation is also studied by jointly optimiz-
ing the UAVs trajectory, the users transmission power, and
the computation load allocation via introducing a heuristic
method based on the successive convex approximation
technique. Furthermore, the feature of wireless powered
communication has been also incorporated in the UAV-
mounted MEC servers. For example in [14], [15] the UAVs
are assumed to transmit energy to multiple ground users,
who in turn exploit the harvested energy for local comput-
ing and computation tasks offloading.

All the aforementioned research works have examined
the users computation tasks offloading problem to the UAV-
mounted MEC servers and have demonstrated accordingly
significant benefits and advances, by making some key
assumptions, which do not necessarily hold true in real-life
networking scenarios. In particular, all the users are assumed
to have rational characteristics and aim to maximize some
form of their perceived utility, e.g., minimizing their energy
consumption, or transmission and processing time overhead
of the computation tasks. However, in reality the users dem-
onstrate a risk-aware behavior, which is driven by their per-
sonal characteristics, the actions and behavior of the other
users, and the conditions in the UAV-assisted network [16],
[17]. Furthermore, when users make decisions regarding off-
loading and particularly in a distributed manner, the uncer-
tainties introduced by the underlying computing resource
availability are not properly accounted for.

Therefore, the users tend to exhibit risk-seeking or loss-
aversion behavior during their decision-making process
under the presence of uncertainty stemming from the compu-
tation environment, which is an intrinsic characteristic of the
MEC environment. As a result, the users computation tasks
offloading problem needs to account for the human aware-
ness and cognition within the MEC environment, capturing
several underlying characteristics, e.g., risk-awareness, which
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are observed in real-life humans’ decision-making process.
For that reason, in this work we leverage Prospect Theory
[18], which has emerged as a realistic model to capture how
people make decisions under uncertainty, by considering and
modeling many of their standard biases. As it has been
argued in [19], Prospect Theory was proposed as an alterna-
tive to pure expected utility theory in order to overcome the
unrealistic assumption, typically made by the latter, that risk
attitudes are constant across all levels of wealth. Prospect The-
ory asserts that the shape of the utility function differs in the
gain and loss domains. An interesting indicative example,
where the users’ risk-aware behavior needs to be considered
for the successful design of complex systems, is the human-
robot interaction design [20], where the robots should predict
the humans’ behavior based on the risk-aware characteristics
of the latter, in order to collaborate with each other smoothly.
Another example refers to the successful design of advertise-
ment campaigns and products’ promotions based on the risk-
aware bias of the customers with respect to products’ nega-
tive reviews in their purchasing decision-making [21].
Regardless of the particular application domain (e.g., human-
robot interaction, advertisement campaigns, etc.), Prospect
Theory evangelizes that the users’ payoff, resulting from their
autonomous decisions under uncertainty, is determined in a
probabilistic manner and deviates from the one received con-
sidering users’ risk-neutral behavior, as the Expected Ultility
Theory commonly assumes.

As far as the users computation task offloading problem
in MEC servers is concerned, very recently [22], [23], Pros-
pect Theory was utilized in a single MEC server environment
to formulate the computation task offloading problem for
resource-constrained IoT devices. The authors considered
the human awareness, inherent cognitive biases and behav-
ioral characteristics into the devices’ operation focusing on
full [22] or partial task offloading [23] to the single MEC
server. Several additional efforts have been reported in the
literature where Prospect Theory has been adopted in vari-
ous environments and application domains. Some of these
applications include: dynamic resource management in 5G
wireless networks [16], [24], public safety networks [17],
anti-amming communications in cognitive radio networks
[25], users’ transmission power management and anti-jam-
ming techniques in UAV-assisted networks [26], and Quality
of Experience [27] in cyber-physical social systems.

1.2 Contributions & Outline

Despite the fact that several approaches, including game
theoretic ones, have been proposed in the literature to study
the offloading decisions in UAV-enabled MEC environ-
ments, our paper aims at exactly filling the aforementioned
gap by incorporating users’ behavioral factors in the users’
computation task offloading problem. In particular, we con-
sider the existence of two different types of MEC servers
(i.e., ground MEC servers and UAV-mounted MEC servers,
each type with different characteristics and capabilities),
while taking into account users’ latency and energy require-
ments. Towards achieving this goal, we exploit the princi-
ples of Prospect Theory [18], motivated by the fact that the
UAV-mounted MEC servers constitute a competitive
resource-constrained environment, where the users make
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decisions under uncertainty of the available resources and
they compete among each other for the shared limited
resources. On the other hand, it is noted that the ground
MEC servers provide a guaranteed slice of computation
resources to each user, given their powerful computing
capabilities and availability. This comes in contrast to the
UAV-mounted MEC servers that offer an unpredictable
slice of computation resources to each user, due to the fact
that the UAV-mounted MEC servers confront the challenge
of the constrained energy availability.

The main contributions of our work that differentiate it
from the rest of the literature, are summarized below:

1. A heterogeneous complex multi-MEC system con-
sisting of both ground and UAV-mounted MEC
servers, that jointly considers the risk-aware behav-
ior of the individual users and the risk of failure of
the shared computing resources, is introduced.
Given this uncertain environment, and in contrast to
the majority of the existing literature that primarily
addresses the problem of binary offloading where
each user may offload its whole application to one
MEC server, in this work we investigate the problem
of partial offloading. In the considered setting each
user can offload arbitrarily parts of its application to
ground and/or UAV-mounted MEC servers for
remote execution [28].

2. The choice of partially locally processing the tasks or
offloading them to the ground MEC servers, where a
guaranteed slice of computation resources is offered
to each user, are considered as a safe and guaranteed
option, respectively, offering predictable perfor-
mance to the users. The difference between the safe
and guaranteed options, mainly stems form the fact
that in the local processing option (i.e., safe option)
each user’s device computation capabilities depend
solely on the user’s local characteristics and are
known before the user’s decision-making and avail-
able only for its own explicit use. This differs from
the ground MEC server option that, though it
presents a powerful computation capability by offer-
ing a guaranteed slice of computation resource to
each user that offloads parts of its data to it, still con-
stitutes a shared resource among the users. The lat-
ter, comes in contrast to the UAV-mounted MEC
servers that act as Common Pool of Resources (CPR),
providing possibly superior but uncertain payoff to
the users. The potential for superior expected payoff
stems from the improved communication channel
gains resulting from the UAVs proximity to the users
compared to the ground MEC servers. On the other
hand the uncertainty stems from the probability of
over-exploitation of their limited computation
resources as a natural outcome of the respective
energy constraints, which in turn may drive the
users to perceive lower satisfaction based on the
principles of the Tragedy of Commons [29].

3. The users’ risk-aware behavior in their decision-mak-
ing process is captured via properly formulated pros-
pect-theoretic utility functions, considering the users’
actual utilities, their latency and energy requirements,

their computation task characteristics, and their per-
ception of the gains and losses. The latter consider-
ation comes in contrast to the majority of existing
works and fundamentally differentiates our work
from current literature body, since the users are not
any more treated as blind utility maximizers, but their
behavioral modeling is specifically designed to reflect
real life human decision-making under uncertainty.

4. Each user’s overall perceived satisfaction is formu-
lated by considering and exploiting all the different
computation options available (i.e., UAV-mounted
servers, ground MEC servers, local computing). In
that respect, each user’s perceived satisfaction utility
results from the overall expected prospect theoretic
utility obtained from the UAV-mounted MEC serv-
ers, the corresponding overall time and energy over-
head by offloading part of its data to the ground
MEC servers, and from executing the remaining
amount of data locally. It is noted that the prospect
theoretic utility is of probabilistic nature, as it
depends on the computing load and congestion at
the UAV-mounted MEC servers, with the latter
being considered as fragile computing resources that
can fail to serve the users’ computation demands
due to their constrained energy availability.

5. The user’s autonomous and optimal computation
task allocation to the available computing alterna-
tives (i.e., local, ground/UAV-mounted MEC serv-
ers), is formulated as a convex optimization problem
of each user’s satisfaction utility. Due to users’ com-
petition for shared resources, i.e., UAV-mounted
and ground MEC servers, it is confronted as a non-
cooperative game among them. The existence and
uniqueness of a Pure Nash Equilibrium (PNE) is
proven, and a low complexity and distributed algo-
rithm that converges to the PNE is proposed.

The remaining of the paper is organized as follows. In
Section 2, the considered system model is presented, by
introducing the communication and computing model, and
defining the users’ experienced time and energy overheads
from transmitting and processing their data to the available
offloading options (i.e., ground and UAV-mounted MEC
servers). In Section 3, the proposed prospect-theoretic utility
function formalities are detailed, whereas in Section 4, the
optimal user data offloading problem is formulated and
analyzed. In Section 5, a distributed low-complexity algo-
rithm exploiting the properties of convex optimization to
determine the game’s PNE is introduced. The performance
evaluation of the proposed framework is achieved via
modeling and simulation, and numerical results are pre-
sented in Section 6. Section 7 concludes the paper.

2 SysTEM MODEL

A UAV-assisted multi-MEC system is considered consisting
of a set of ground MEC servers G = {1,...,g,...,G}, a set
of UAV-mounted MEC servers F = {1,...,f,...,F}, and a
set of users U = {1,...,4,...,U}. Let us also denote the set
of all available MEC serversby S = {1,...,s,...,S},ie, S =
GUTF and S = G + F. The ground MEC servers are attached
to base stations and access points located in different places
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Fig. 1. UAV-assisted multi-MEC system.

on the ground. An indicative topology of the considered
UAV-assisted multi-MEC system in Fig. 1.

We further denote by T; = (B;, 1;, ¢;) the user’s i compu-
tation task, which is characterized by: a) the amount of the
B, [bits] input bits (i.e.,, data to be processed), b) the

required ¢ = B; CPU-Cycles where ¢ > 0 {%}
describes the level of the user’s computation task’s intensity
(in the following, we consider that the users are requesting
computation tasks with similar computation intensity and
thus homogeneous ¢ computation intensity factors are con-
sidered, in alignment with current literature [30], [31]), and
¢) the user’s computation task’s latency and energy require-
ments, denoted by ¢; [sec] and e; [J], respectively. The
latency requirement ¢; is related with the user’s task and
indicates that the latter has to be completed before this time
deadline. Moreover, each user’s local device is characterized
by a limited energy availability (associated with the actual
device’s battery). For that reason, the user’s device’s energy
requirement e; is considered as well, and it constitutes an
upper limit value for the user’s overall consumed energy to
complete the task. Each user can arbitrarily partition its
application into distinct parts and offload them to the
ground MEC servers and the UAV-mounted MEC servers,
which are capable of processing the users’ offloaded data in
parallel, while the remaining amount of data is processed
locally [15], [28]. Accordingly, the energy requirement, as
used in this paper, practically reflects a threshold value that
the user may set with respect to the use of its own energy
resources for the execution of the specific task under consid-
eration. It essentially refers to energy components con-
sumed only at the user device, either for local execution or
for transmission to the server.

The users’ communication overhead of associating with
multiple UAV-mounted and/or ground MEC servers is
assumed negligible compared to the corresponding data
transmission and processing overhead. Nevertheless, it is
noted that it can be easily incorporated in our model and
framework, by considering an additional constant factor -
which would typically be of smaller magnitude compared
to the rest of the involved overhead factors - in the formula-
tion of the corresponding communication overhead, each
time that a user is associated with a sever.

We denote by b; = (bi1,-..,bis,...,bis) the user’s ¢ off-
loading vector, where b; ; [bits] is the amount of data that
user ¢ offloads to the MEC server s (either ground or UAV-
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mounted MEC server). Accordingly, the total amount of data
that user ¢ offloads to the MEC servers equals to ) < bis <
B;, Vi € U, while the rest L; = B; — )¢ bi amount of data
is processed locally at the user’s device. The data offloading
strategy of all the users is b = (by, ..., by). For practical pur-
poses, and assuming single-communication interface at each
user, we consider that each user transmits sequentially its
data b; 5, Vs € S, and each MEC server has sufficient memory
to store the received data. Each UAV-mounted MEC server’s
s,s € F, energy availability is denoted as E; [J], a part of
which is used for the UAV’s operation (e.g., accurately main-
taining its position above the ground) and the rest E? is con-
sumed for the users’ offloaded data processing.

2.1 Communication & Computing Model
A multi-channel interference limited wireless communica-
tion environment is considered, where the system’s band-
width is divided in wireless communication channels, i.e.,
frequency bands. Each MEC server (ground or UAV-
mounted) is assigned and occupies one such wireless com-
munication channel and receives the users’ offloaded data
through it [32], [33], [34]. Thus, the users communicating
with the same MEC server share the same channel and
accordingly they experience intra-channel interference,
while avoiding the inter-channel interference stemming
from users offloading their data to other MEC servers.
Thus, the user’s i uplink data rate to the MEC server s is
Ris =W, log(l + —"3+Zi tij;jpj.s*gj.s ), where W, is the
MEC server’s s channel bandwidth, p; ; is the user’s ¢ trans-
mission power to offload its amount of data to the MEC
server s, g; s is the channel gain between the user ¢ and the
MEC server s, 0(2) is the variance of the Additive White
Gaussian Noise, and U; = {i € U : b; ; # 0} is the set of users
that offload a non-zero amount of data to the MEC server s.

It should be noted that in practice some users may com-
plete their data transmission earlier than others, which
means that they may no longer contribute to the interference
term (i.e., Z]‘EUSJ# Djs * gj,5) of therest users, i.e., Uy, who still
transmit their data to the MEC server s. To fully characterize
each user’s perceived transmission rate when the user actu-
ally performs the data offloading to the MEC server s, would
imply that during the decision-making process, the user i is
aware of specific individual information about the rest of the
users, both in terms of individual user offloading strategies
as well as communication information (i.e., transmission
power, channel gain), such that the actual interference term
is evaluated. Such an approach, though would be more accu-
rate by fully exploiting the time dimension as well, it would
be rather complex and impractical, or even infeasible in most
cases. Moreover, the way that the user’s ¢ uplink data rate
R, s to the MEC server s is defined above constitutes a lower
bound, i.e., the worst-case, transmission rate that a user per-
ceives by offloading b; ; data to the MEC server s. This worst-
case formulation of the transmission rate for the purposes of
computation offloading, is well aligned with commonly
assumed research efforts in the literature [34], [35].

The user ¢ by offloading b; ; data to the MEC server s, s €

S experiences a transmission time overhead O! |,

. b
e _ Yis .
and a transmission energy overhead 05 |, = R Dise

_ Yis

T Ry’
We
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%} and [¢ [%} the user’s i
device’s local computation capability and energy consump-
tion, respectively. Thus, the user’s perceived local time
overhead is O!|, = % [sec] and its local energy consump-
tion is O¢|, = L; * ¢« I¢ [J]. It should be noted here that in
our setting, without loss of generality, we assume that both
energy and time overheads are of equal and high impor-
tance. Accordingly, taking into account normalization
aspects to guarantee the same order of magnitude of the
jointly considered time and energy overhead [34], [35], the
user’s i overall local overhead is formulated as follows.

denote as [§ [

ol Ol

t; €;

Oi|1 = (1)
In Sections 2.2 and 2.3, the ground and UAV-mounted MEC
server’s computing models are introduced. It should be
clarified that in this research work, we assume that a MEC
server is capable of parallel processing the users” offloaded
data. The latter is commonly considered in the literature
[34], [35], [36], [37], where a MEC server is able of comput-
ing the users’ offloaded tasks independently through virtu-
alization techniques.

2.2 Ground MEC Servers and Actual Overhead
Each ground MEC server s, s € G has a powerful computa-
tion capability (e.g., high speed CPU). We consider that

each ground MEC server offers a guaranteed slice of com-

CPU-Cycles

putation resources f¢ [ soc

} to each user that off-

loads part of its data to the specific ground MEC server s.
Thus, the ground MEC server acts as a guaranteed option
for the user to process its data. Considering the user’s trans-
mission time O! |, and energy O |,. overhead, as well as

the process%ng time for the b;; data at the ground MEC

server, i.e., =%, the user’s i actual overhead for offloading
b; s data to thé ground MEC server s is given as:

t bisx
Ol + Oy,
Ozgg‘gr = r + 6 . (2)
7 7

Thus, the user’s i overall actual overhead by the data offload-
ing and processing to the ground MEC servers is given as:

=0 =) bis <m + f;’ti * }§§6L> @

seG seG

0;

gr g
2.3 UAV-Mounted MEC Servers and Expected
Overhead

The UAV-mounted MEC servers offer an attractive choice to
the users by possibly providing superior (compared to
ground MEC servers) payoff to them, due to the potential
establishment of better communication channel gains as an
outcome of their closer proximity to the users. In this
research work, we consider that the UAVs trajectory is a pri-
ori known and the UAVs have the ability to hover closer to
the users, in comparison to the users’ corresponding dis-
tance from the ground MEC servers. However, each UAV-
mounted MEC server s, s € F has limited energy availability
E? to be used for the processing of the users’ offloaded data.

Furthermore, each UAV-mounted MEC server is considered
as a Common Pool of Resources (CPR) and its computation
capability, which is shared among the users, is a decreasing
function of the overall amount of received data, as the more
data are offloaded to the UAV-mounted MEC server, the
less computation capability is assigned to each user.

%] each UAV-mounted MEC

server's s energy consumption, then based on the users’
level of computation task intensity ¢, the threshold data
value that each UAV-mounted MEC server can receive for

By denoting as e [

i o B El/es ho—
remote processing is By = —==. Let b, = > icv, bis denote

the UAV-mounted MEC server’s total received amount of
data. Each UAV-mounted MEC server’s s computation
resources slice, denoted by fY, that is allocated to each user
is a portion of the server’s overall computation capability
FY [CPU-Cycles/sec] to be shared among all users, and is
formulated as follows.

f= (1-%)173. (4)

s

Each UAV-mounted MEC server s, s € F constitutes a rival-
rous and subtractable resource, since all the users can arbi-
trarily offload part of their data for remote execution. This
means that its utilization by one user reduces the degree
that is exploited and utilized by another user. Thus, it is
observed in Eq. (4) that each user computation resources
slice f¥ decreases as the overall data b, received by a UAV-
mounted MEC server s increases due to the fact that the
server becomes more congested, especially given the UAV-
mounted MEC server’s limited energy availability. Also,
based on Eq. (4), it is evident that if b; > B;, then the UAV-
mounted MEC server is unable to process the received
amount of data due to its limited energy availability. It is
worth mentioning that even in the case of bs > B,, there
may still exist users” offloaded data that could be processed
by the UAV-mounted MEC server s with an appropriate
scheduling. However, this is not deterministically known
by the users, when the latter ones are making their offload-
ing decisions (Section 5). For that reason, in this research
work, considering the importance of each user’s 4 latency
(t;) and energy (e;) requirements’ fulfilment, we adopt a
worst-case scenario approach, where each user considers
that with probability ps(bs) its offloaded data are unable to
be processed by the UAV-mounted MEC server s. This phe-
nomenon is well known in the literature as the Tragedy of the
Commons [29]. In the case of the UAV-mounted MEC serv-
er’s failure, it is more beneficial for the user to offload its
data to another MEC server (ground or UAV-mounted) or
to process them locally on its device. Moreover, each UAV’s
overall energy availability £, decreases over time, as part of
it is consumed for the UAV’s operation, thus E?, B,
decrease over time as well. The latter constitutes a comput-
ing uncertainty for the users decision-making offloading, as
the UAV-mounted MEC server’s capability to process the
offloaded data by the users is not known in prior. As a
result, the uncertainty of each UAV-mounted MEC server’s
failure is captured by its probability of failure, thus, the
users exhibit a risk-aware offloading behavior.
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TABLE 1
Summary of Key Notations

Notation Description [Units]

S Set of MEC servers

G Set of ground MEC servers

F Set of UAV-mounted MEC servers

U Set of users

T; User’s i computation task

B, Total input bits of user i [bits]

¢ Computation task’s level of intensity of users [CPU-

Cycles/bit]
ti,e User’s i latency [sec] and energy [J] requirements
b; s Offloaded data of user i to MEC server s [bits]
E, UAV-mounted MEC server’s energy availability [J]
R, Uplink data rate of user i to MEC server s
W, MEC server’s channel bandwidth [Hz]
Dis Transmission power of user i to MEC server s
Jis Channel gain between user ¢ and MEC server s
o Variance of the Additive White Gaussian Noise
b; User’s i data offloading vector
L; User’s i amount of locally processed data [bits]
b Data offloading strategy of all users
U, Set of users offloading data to MEC server s
0! i User’s i transmission time overhead to offload data
to MEC server s [sec]
05l User’s i transmission energy overhead to offload
data to MEC server s [J]
I User’s i local computation capability [CPU-Cycles/
sec]
I¢ User’s i local computation energy consumption [J/
CPU-Cycles]
Oil, User’s i local time overhead [sec]
o5, User’s i local energy consumption [J]
04, User’s i overall local overhead
FY UAV-mounted MEC server’s computation
capability [CPU-Cycles/sec]
re Guaranteed computation resources slice assigned to
a user by the ground MEC server s [CPU-Cycles/
sec]
v UAV-mounted MEC server’s s computation
resources slice assigned to a user [CPU-Cycles/sec]
islg  User'sioverall overhead by a ground MEC server s
il gr User’s i overall overhead by the ground MEC
servers
€s UAV-mounted MEC server’s s energy consumption
[J/CPU-Cycles]
EP UAV-mounted MEC server’s data processing
B energy availability [J]
by Overall data received by a UAV-mounted MEC
server s [bits]
B, Threshold data value of a UAV-mounted MEC
- server s [bits]
Ds(bs) Probability of failure of UAV-mounted MEC server
s
a, Y Sensitivity to the gains and losses of user 4,
respectively
ki Loss aversion parameter of user ¢
Ui g User’s i prospect-theoretic utility
0; User’s i total overhead
Oisly  User’s i overall overhead by a UAV-mounted MEC
server
Oily User’s overall overhead by the UAV-mounted MEC
servers

User’s reference point
(bl, b_;)User’s satisfaction utility

FZ User’s i strategy space
b; User’s i optimal data offloading vector
b* Pure Nash Equilibrium point
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Assumption 1. Each UAV-mounted MEC server’s s,s € F
probability of failure ps(bs) is strictly increasing, convex and
twice differentiable with respect to by € [0, By), with ps(bs) =

1/ VBS Z BS'

In this paper, we consider a linear probability of failure
function, thus p,(b,) = b,/B,, Vb, < B,, while p,(b,) =1,
Vbs > B,. The physical meaning of this model is that the
UAV-mounted MEC server will deterministically fail to
serve the users’ computation demands, if their total amount
of offloaded data exceeds the server’s computation capacity,
ie., ps(bs) =1, Vb, > B,. In the case however, where the
users’ total amount of offloaded data does not exceed
the server’s computation capac1ty, ie., Vb, < B,, then, the
UAV-mounted MEC server’s probability of failure is not
zero, but probabilistically depends on the amount of off-
loaded data that it needs to process, i.e., ps(bs) = bs/B. This
holds true since each UAV-mounted MEC server’s actual
threshold data value B, decreases over time, thus is not
deterministically known by the users, when they make their
data offloading decisions.

It is noted that the rest of the paper’s analysis still holds
true for any other probability of failure function that follows
the Assumption 1 and the selection of a linear probability of
failure function is made for presentation purposes. Study-
ing the behavior of additional probability of failure func-
tions, such as the one resulting form a Poisson process
regarding the arrival data from all users, is also of high
research interest and part of our future work. The probabil-
ity for the UAV-mounted MEC server to survive and pro-
cess the users’ offloaded data is (1 — p,(b,)). Thus, the user’s
expected perceived overhead by offloading b; s to the UAV-
mounted MEC server s is:

B(Oislp) = (1 ps<55>>o“|ﬂ +pulb)
» OF
(O = . +e—|f) ®)
where i ;
t | i bi sx¢ O 1.
OLS'ﬂ I t7t‘ fs + l;‘tr , (6)

is the actual overall overhead that user ¢ experiences by off-
loading part of its data to a UAV-mounted MEC server s,
where O; |, = b” and Of |, = b“ “Pis, Vs,s € F. The last
two terms in Eq (5) indicate the ﬁser s additional time and
energy overhead (accounting for the need to transmit the
data before the UAV-mounted MEC server’s failure is
finally observed). As a result, the user’s ¢ overall expected
overhead by the UAV-mounted MEC servers is E(O;|,) =
> ser E(Oislp), and its overall overhead based on its off-
loading strategy b; is formulated as follows.

E(0:) = E(Oily) + Oil, + Ol )

3 THE PROSPECT OF DATA OFFLOADING

To address the users’ subjectivity in the data offloading deci-
sion-making under the uncertainty of each UAV-mounted
MEC server failure, and considering that in real life users are
not risk-neutral, we adopt the principles of Prospect Theory.
Prospect Theory was introduced by Kahneman and Tversky



APOSTOLOPOULOS ET AL.: DATA OFFLOADING IN UAV-ASSISTED MULTI-ACCESS EDGE COMPUTING SYSTEMS UNDER RESOURCE UNCERTAINTY 181

[38], and it is a behavioral model where the users make deci-
sions under risk and uncertainty of the associated payoff of
their choices, which is estimated in a probabilistic manner.
Prospect Theory captures users’ behavioral patterns, where
a user perceives greater dissatisfaction from a potential loss
compared to its satisfaction from gains of the same magni-
tude (loss aversion property). The user’s losses and gains are
evaluated with respect to a reference point, which implies a
safe outcome that the user can perceive (reference dependence
property). Moreover, the users’ associated utility function is
concave for gains (i.e., users are risk averse in gains) and con-
vex for losses (i.e., users are risk seeking in losses), i.e., dimin-
ishing sensitivity property.

Some research works have focused on examining users’
behavior under the cases of observing only gains or losses in
the examined system, i.e., concave and convex part of user’s
utility function, respectively [22], [39]. However, in this
research work, we examine the users risk-aware behavior
(i.e., with respect to both gains and losses) under the princi-
ples of Prospect Theory, jointly with the risk of failure of the
shared UAV-mounted MEC servers’ computing resources,
as reflected by the theory of the Tragedy of the Commons.
Following the prospect-theoretic behavioral model, each
user’s perceived actual overhead (Eq. (6)) by offloading b;
data to the UAV-mounted MEC server is evaluated with
respect to a reference point ¢;,. In our work, the reference
point expresses the corresponding overhead that the user
would have obtained if processed locally the b; ; data, i.e.,
gir = O],(bis) (Eq. (1)). Moreover, following the diminishing
sensitivity property, the user’s prospect-theoretic utility
function is concave with respect to the user’s actual overhead
(Eq. (6)) above the reference point g; ,, i.e., gains curve, while
itis convex bellow it, i.e., losses curve. Also, the prospect-the-
oretic utility function has a greater slope in the losses com-
pared to the gains, as the user weighs more the losses (i.e.,
experiencing a higher actual overhead O; | ; compared to its
reference point) compared to the gains (loss aversion property).

Based on the above analysis, we combine the properties
of reference dependence, diminishing sensitivity, and loss
aversion, and we define each user’s i prospect-theoretic util-
ity function, following the general form of the prospect-the-
oretic utility function [18], as folows.

is(gis) = { (g, ~ e A iy < gy ®)
1,5 \Yi,s 7]{1_ . (in’S _ qtr)yl' , if Gi.s > Qi,r7
where ¢; ; = O, | p if the UAV- mounted MEC server sur-
Ot i .
vives, otherwise ¢;, = O;|, + tylf 4 Zisltr Jf . as the by, data are

executed locally, while an add1t10na1 communication over-
head is generated by their transmission to the UAV-mounted
MEC server (despite its eventual failure). Each user aims to
maximize its prospect-theoretic utility (Eq. (8)). If the UAV-
mounted MEC server survives, the user targets at its gains’
maximization (first branch of Eq. (8)), i.e., its actual overhead
minimization, while in the opposite case, the maximization
of the user’s prospect-theoretic utility indicates the user’s
losses” minimization (second branch of Eq. (8)).

The user’s risk seeking behavior in losses and risk averse
behavior in gains are reflected by small values of the param-
eter o; € [0, 1]. Also, small values of the parameter y; € [0, 1]

reflect a higher decrease in the user’s prospect-theoretic util-
ity, when its actual overhead is close to the reference point.
Without loss of generality, we consider that the users follow
similar behavior both in losses and gains, i.e., a; = y;, Vi €
U. Moreover, the parameter k; captures the users’ loss aver-
sion behavior. Specifically, a user weighs the losses more
than (k; > 1) or equal to ( k; = 1) the gains, while the oppo-
site holds if k; < 1.

Considering the case that b, < B, = £ d{ “s, then the UAV-
mounted MEC server’s limited energy E? is expected to be
sufficient to process the users’ offloaded data b. To this
end, we assume that the user’s perceived actual overhead
gi,s is lower than the reference point (¢; s < ¢;,), given that a
UAV-mounted MEC server is considered to have signifi-
cantly higher computation capability compared to the corre-
sponding one of the users’ devices themselves [2], [11]
(indicative realistic values are provided in Section 6) . Based
on Eq. (6) and the first branch of Eq. (8), the user’s prospect-

. L
theoretic [b.s (-2 : l[ ¢ 1 ¢

ep }; )]%. In the case of the UAV- mounted MEC server’s fail-

ure (i.e., by > B,), the user’s actual overhead i s 1S greater
O |tr O |tr

. 7
T,, el

following the second branch of Eq. (8), the user’s prospect-

utility is ;s =

than the reference point ¢;,, as ¢ s = ¢, +

theoretic utility is w; s = —k; - [b;, g( 7+ Rp” )]%. For nota-

tional convenience, we set ¢ = (R,li_ Bf)l 7=)" and g;, =
> 1,8 Y1 1,8 1

o B 1 ¢ Pis e , ;

(m-lf P R T 7). Thus, the user’s prospect

theoretic utility can be re-written as follows.

,with prob.(1 — p,(bs))
, with prob.p,(bs)

1,8 _kz € bzlé

Therefore, each user’s expected prospect-theoretic utility
by offloading b; ; data to a UAV-mounted MEC server is for-
mulated as follows.

9)

_ E(U, 9) = bflq : hi,s(gs)7 _ (10)

where h; 5(bs) = gis(1 — ps(bs)) — ki€ips(bs).

4 OPTIMIZING USERS’ SATISFACTION: A GAME
THEORETIC APPROACH

4.1 Problem Formulation

The goal of each user is to maximize its overall expected
prospect-theoretic utility . E(u;,) that obtains from the
UAV-mounted MEC servers, while at the same time to min-
imize its overall local overhead O;|, and its overall actual
overhead O;,, by offloading part of its data to the ground
MEC servers. Thus, we introduce each user’s satisfaction
utility, which is formulated as:

bhb ZE(U’29 O1|1 7Oi|q,-7 (11)
seF )
where b_; = [by,...,bi_1,bit1,...,by] is the users’ offload-

ing strategy vector except of user i. The physical meaning of
the user’s satisfaction utility is the user’s overall perceived
satisfaction by processing its data in the UAV-assisted MEC
system by jointly considering the local computation, as well
as the computation at the ground MEC servers and the
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UAV-mounted MEC servers. Based on Egs. (1), (3), and (10),
the user’s satisfaction utility is written as follows.

silbicbo) = S0 () - Lo+ 1)
seF l €i
¢ Dis
- b79( + - )a
2 i

(12)

where, as mentioned earlier, L; = B; — ) b, are the
user’s ¢ data that remain to be processed locally.

Each user aims to autonomously determine its optimal
data offloading b; by maximizing its satisfaction utility s;,
while at the same time it perceives a non-negative expected
prospect-theoretic utility E(u;s) by each UAV-mounted
MEC server, since a negative value of the latter implies a
high probability of failure for the UAV-mounted MEC
server. Furthermore, each user’s optimal offloading strategy
b; should satisfy its latency and energy requirements, i.e.,
E(O))|, < t;, E(O;)|, < e;, where E(O;)|, and E(O;)|, are the
expected overall time and energy overheads, as formulated
in Egs. (14) and (15), respectively. It is noted that the user’s
overall time overhead (Eq. (14)) considers its aggregated
transmission time that is required to sequentially transmit
its offloaded data to the MEC servers. If we had considered
that each user’s device supports a multi-communication
interface , i.e., transmission to more than one MEC server at
the same time through multiple channels, instead of the sin-
gle-communication interface assumed here, then the user’s
overall corresponding transmission time would be replaced
by the maximum required transmission time. However,
even in this case the provided mathematical analysis would
follow the same line of thread.

Thus, each user’s satisfaction utility maximization prob-
lem can be formulated as follows.

maximize si(bi, b_;)
biEFZ'
ZSES bhs S Bz:
, E(ui,) >0, Vs €F, (13)
subject to ’ ),
E(0;)], <t
E(0i)]. < e
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where I'; = [0, B;] x x [0, B;] S - times, and (C;) are the
constraints that each user’s optimal offloading strategy b;
must satisfy.

The above maximization problem (Eq. (13)) can be con-
fronted as a non-cooperative game among the users who
aim to determine their optimal data offloading strategy in
a distributed manner. Let G = [U,{I';},.y, {si};,cy] denote
the non-cooperative game, where U is the users’ set, I'; is
each user’s strategy space, and s; is its satisfaction utility.
The solution of the above maximization problem is cap-
tured by the Pure Nash Equilibrium (PNE), which is the
users’ offloading vector b* = [b],...,b],...,b{], where no
user has the incentive to change its ofﬂoadmg strategy b;,

given the strategies of the rest users b*; = [b],...,b{ ;,

b{ ., ...,b{l

Definition 1. The vector b* = [b;,...,b;,..., bl e, I'=
I't x ... x 'y, is a Pure Nash Equilibrium (PNE) of the non-

cooperative game G, if Vi € U it holds true that s;(b},b*;) >
Si(bi,bii),Vbi S Fi.

It is noted that in principle, finding the PNE of a non-
cooperative game could be essentially considered as a
complex combinatorial problem among the users, whose
computation complexity makes it intractable [40]. To treat
this issue, in this work we focus on investigating a distrib-
uted solution that overcomes the aforementioned limita-
tions and inefficiencies. In particular, the existence and
uniqueness of a PNE point of the non-cooperative game G
is proven (Section 4.2). Moreover, capitilizing on the contin-
uous Best Response (BR) dynamics methodology and prop-
erties, the convergence of a distributed-based method to the
unique PNE is proven [41]. Specifically, following the BR
principles, each time a user is selected to determine its opti-
mal offloading data strategy by solving a convex optimiza-
tion problem (Section 5).

4.2 Existence, Uniqueness and Convergence

of PNE
We denote as A;, each user’s set of strategies that satisfy the
group of constraints (C;), thus A, ={bjel;:

b; satisfies (C;)}, A; C I';. Let us introduce the transformed
non-cooperative game G' = {U, {4;},cy, {si}icu }-

Ps=bs/Bsbs=bi -+ ., Us— iy Vit > Uerti by
B(O), = B0l + Olyl, + Ol Sy, (g B ) S (G, Sl
V=01~ )Fl VseF SEF SEF li \ Bs s
+ ths ( _) ( ZbL a)
seG seS
(14)
Ps=bs /By bs=biutd Syeu, g bis Dis his+ 200 os 5
E(O7)|(, :E(O7|fl)|(,+O7|qr|¢+07ll‘( = 2679 +Zbl 9¢[ 6
ses 7 S seF (15)
seS
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Theorem 1. The non-cooperative game G’ among the users is an
n-person concave game, where n = U.

In order to prove the above theorem, we first state the fol-
lowing Lemmas 1, 2, 3, and 4.

Lemma 1. For each user i and each UAV-mounted MEC server
s,s € F =S — G, there exists a threshold value 5,;‘,3 >0, such
that h[s(575) = 0, and E(Ui,s) > 0, Vb75 < 51;,8, while
E(Ui_’s) <0, Vbiys > l;i,s-

Proof: See Appendix A, which can be found on the Com-
puter Society Digital Library at http://doi.ieeecomputer
society.org/10.1109/TMC.2021.3069911..

Consequently, based on Lemma 1 the maximization
problem in Eq. (13) can be rewritten as follows:

maximize si(bi, b_;)
biEFi
Y osesbis < B,
. 0 < biy < by, Vs €F, (16)
subject to ’ ’ (C;
E(Oy)], <t
E(Oi)] < e

where the second constraint (C;) was replaced by the
inequality 0 < b; s < b; .

Lemma 2. For each user i and each UAV-mounted MEC server
s,s € F, the expected prospect-theoretic utility E(u;;)
(Eq. (10)) is a strictly concave function Vb; , € (0,b;), where
b; s is the threshold value that was defined in Lemma 1.

Proof: See Appendix B, available in the online supple-
mental material.

Lemma 3. Each user’s group of constraints (C;) is a set of con-
vex functions.

Proof: See Appendix C, available in the online supple-
mental material.

Based on Lemma 3, each user’s set A; is the intersection
of the level sets of the convex functions in Eq. (C.1), avail-
able in the online supplemental material, thus A; =
(Nuyeqrasy L™, 0) 0 (Myeqos Lev(n?,0), Vs €F,
which are necessarily convex sets (see Section 3.1.6 of [42]).
Therefore, each user’s set of strategies A; is a convex set as
an intersection of convex sets.

Lemma 4. Each user’s satisfaction utility s; is a concave func-
tion over the strategy space A;.

Proof: See Appendix D , available in the online supple-
mental material.

Based on Lemmas 1, 2, 3, and 4, each user’s strategy space
A; is a convex set, and each user’s i satisfaction utility
si(bj, b_;) is a concave function over the set A;. Therefore, the
non-cooperative game G’ is an n-person concave game, where
n = U, and the proof of Theorem 1 is completed. An n-person
concave game has at least one PNE point [43], thus, the exis-
tence of at least one PNE point for the non-cooperative game
G is guaranteed. Finally, based on Theorem 1, Lemma 4, and
[43], the following Theorem proves the convergence of the
users’ strategies to the PNE.

Theorem 2. Consideringzthe user i and an S x S matrix func-
tion X;, (Xi),w =N T ab o VS s €S, and the positive con-
stant choices )\ > 0, then the PNE of the game G is unique if
X; + X7 is strictly negative definite. Also, starting from any
initial offloading strategy vector b = (bq,...,by), be A=
Ay x - Ay x -+ x Ay, the continuous Best Response (BR)
dynamics converge to the unique PNE [41].

Proof: See Appendix E, available in the online supple-
mental material.

It is noted that, given that the user’s satisfaction utility
si(b;j,b_;) is a concave function over its convex strategy
space A; (Lemma 4), it has a global maximum point. In the
case that the global maximum point is beyond the user’s
feasibility region, i.e., strategy space A;, then the user con-
verges to its maximum data offloading strategy (see DCP
algorithm’s line 13 in Section 5.2), in order to maximize its
satisfaction utility.

5 DETERMINING THE EQUILIBRIUM
5.1 A Convex Optimization Approach

Each user’s best response offloading strategy bj(b_;) :
A_,=A,; can be formulated as follows.
b;(b_;) = argmax(s;(b;,b_;)),b_j € A_;, 1n)

bicA4;

where A,i = A1 X "'Aifl X Aﬂ,l Xoee
lently it can be written as:

x Ay and equiva-

b;(b_;) = argmin(s,(bi,b_;)),b; € A_,.
bicA;

(18)

Therefore, each user should solve the following optimi-
zation problem to determine its optimal data offloading
strategy.

minimize 8; (bi,b_;)
b;cA; )
ZSES b7<; S Bia
- (19)

0<bjs<bg VseF,

subject to = Dis = By T (G).
]E(Ol)|t <t
E(Oi)], <e

It is clarified that the non-offloading strategy (i.e.,
b; = 0) corresponds to the worst case decision, as in that
case the users would execute their tasks locally by using
their own devices limited resources, which would con-
clude to lower perceived satisfaction, compared to the
case where part of their tasks are offloaded to the MEC
environment. Thus, under the assumption that the non-
offloading strategy, i.e., b; = 0, constitutes a worst feasi-
ble solution of the optimization problem in Eq. (19) (that
is b; =0 € A;), the proposed distributed algorithm (Sec-
tion 5.2) will examine and eventually converge to any
alternative offloading strategy (if it exists) that satisfies
the constraints in Eq. (19) and leads to a higher per-
ceived satisfaction utility. As a result, the optimization
problem in Eq. (19) is a non-linear feasible convex opti-
mization problem, thus A; # 0.
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Algorithm 1. DCP Algorithm
1:  Input/Initialization: F,G,U,T;,b; € T;,Vi €U, B, b,
Z]EUM# DjsGjs, Vs €S, ite =0

2:  Output: PNE strategy b* = (b3,...,b{))
3:  while Convergence == 0 do
4. ite = ite + 1
5: flag=0
6: fori=1toU do
7: fors =1to Sdo
8: user i calculates the transmission uplink rate R;
9: if (s € F) then
10: 7.5 = BinarySearch([0, By), €);
11: end if
12: if (s € F) then
13: bis = min(r; s, B;);
14: end if
15: end for
16: b} = fmincon();
17: if (b, — bis| < €,Vs €S) then
18: flag = flag +1;
19: end if
20: b; = b;
21: user i updates by, Y i 11iDjsYjs V5 €S
22: user i broadcasts the new values intra-channel
23: end for
24: if (flag == U) then
25: Convergence = 1, Ite = ite;
26: end if
27:  end while

5.2 Algorithm & Complexity Analysis

In this section, the Distributed algorithm for Convergence to
the PNE (DCP Algorithm) of the non-cooperative game G’ is
presented. First, each UAV-mounted MEC server evaluates
its threshold data value B,, and the latter is shared with the
users via a broadcasted signal, at the beginning of the users’
offloading decision-making process. As discussed in Sec-
tion 2.3, each UAV-mounted MEC server’s threshold data
value decreases over time, thus in practice it may deviate
from the received threshold data value B, by the users at
the beginning of their offloading decision-making. The lat-
ter uncertainty is captured through the UAV-mounted MEC
server’s probability of failure function (Section 2.3). Follow-
ing the principles of continues BR dynamics, at each round
a user is selected to determine its optimal offloading strat-
egy. Each user receives the bs, Vs € F, and the factor
> jev, j#i Pis9is, V8 €S via intra-channel broadcasted sig-
nals [34] from the user that was selected on the previous
round to determine its offloading strategy, thus avoiding
any need for each user to receiving individual information
about the rest of the users, both in terms of individual user
offloading strategies as well as communication information
(i.e., channel gains). Moreover, based on Lemma 1 the root
r;s of the equation h;s =0 exists, and since the h;, is a
strictly decreasing function, the root r; ; is found via Binary
Search in [0, B,], while 51‘,5 is obtained as: b; , = min(r; s, B;).
Moreover, in order to solve the non-linear convex optimiza-
tion problem in Eq. (19), a variety of known methods can be
applied [44]. In this paper, the method of the sequential
quadratic programming (SQP) [45] is adopted by using the

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 1, JANUARY 2023

function fmincon() in the MATLAB Optimization Toolbox
[46]. Finally, after the user ¢ determines its offloading deci-
sion b;, then it appropriately updates and broadcasts the
received b, and the factor Z]‘EUSJ;@ Djs9j.s, VS € S.

Regarding the DCP algorithm’s complexity, each user
applies a Binary Search routine in each interval [0, B,],
so as to determine the r;; and Z;L;’S, Vs € F. Therefore,

each user finds the b;;, Vs € F, with a complexity O(F -

1og2(m¢]zF:r(Bs)). By denoting as O(A) the complexity of the
IS

fmincon() function, and since the rest operations involve
only algebraic calculations, each user’s complexity to allo-
cate its best response offloading strategy b} at each iteration
ite of the Best Response (BR)-dynamics is O(A+ F'-

1og2(m¢]sz(Bs)). Considering that the DCP algorithm is exe-
s€

cuted by U users, and denoting as Ite the required iterations
for convergence to the PNE, the overall complexity of the
DCP algorithm is O(U - Ite - (A + F -log,(max(By)))).
Finally, since the complexity of the optimization problem
O(A) can be considered significantly greater than the com-

plexity O(F - log ,(max(B;)), then, the overall complexity of
the DCP algorithm if%(U - Ite - A).

6 NUMERICAL RESULTS

In this section, a detailed numerical evaluation is presented
to study the performance and the inherent attributes of the
proposed framework in the UAV-assisted network. Initially,
we assume users exhibiting common risk averse behavior,
in order to gain some insight about the process of optimal
data offloading in each computing environment, as well as
the corresponding utility obtained (Section 6.1), while sub-
sequently, the impact of user heterogeneity on the data off-
loading process is investigated (Section 6.2). A comparative
evaluation of our approach against alternative data offload-
ing strategies is provided in Section 6.3, while in Section 6.4
the proposed framework’s performance is studied for dif-
ferent topologies with respect to the number of users and
their position distribution. Finally, Section 6.5 summarizes
the main observations derived, by providing meaningful
insights about the overall operation and key features of the
framework. The proposed framework’s evaluation was con-
ducted in a MacBook Pro Laptop, 2.5GHz Intel Core i7, with
16GB LPDDR3 available RAM.

We consider a UAV-assisted network servicing U = 200
users, via a set of S =10 MEC servers, i.e.,, G = 7 ground
MEC servers and F' = 3 UAV-mounted MEC servers with
each UAV having a coverage area of radius R, = 100m.
Unless otherwise explicitly stated, the users are randomly
and uniformly distributed in two-dimension grid 1000 m x
1000 m. Each user’s channel gain is modeled as g¢; ; = 1

=3,
where d; ; is the user’s i distance from the MEC server s and
0 = 3 is the distance loss exponent. In this research work, in
line with the corresponding models adopted in the majority
of the related literature [47], [48], we consider the free-space
path loss model regarding the users’ channel gain in com-
munication with the MEC servers (ground or UAV-
mounted), as the line-of-sight links are much more domi-
nant than other channel impairments such as shadowing or
small-scale fading [49]. However, it is noted that the
adopted channel model does not have an impact on the
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Fig. 2. Convergence of an indicative user’s offloaded data to the ground
and UAV-mounted MEC servers.
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Fig. 3. Convergence of an indicative user’s energy and time overhead by
offloading data to all the MEC servers.

foundations and validity of the proposed distributed data
offloading framework, which can be directly applied by
adopting other channel models as well. Each MEC server’s
channel bandwidth is W, = 5 M Hz, and eacl21 user’s trans-

mission power to the MEC server s is p; , = so it is nor-

RL’%%/
malized and proportional to its distance from the respective
MEC server. Also, we set [f € [0.1,1]- 107 “-Cudes e —
10_9 CHJny(flc Vie U’ FeU € [47 10] ’ 109 CPU;C€yCl€5, ES €
[100,200]K.J, b, € [30,701% - S22 B;, B; € [1000,5000]KB
and ¢ = 10° CPU-Cycles [50], [51]. Unless otherwise
explicitly stated, we assume a homogeneous population

with common risk preferences, ie., o; =0.2 and k; =5,
Vi e U.

6.1 Pure Operation of the Algorithm

In the following, we present the operational characteristics
and performance of the proposed user-centric prospect-theo-
retic data offloading approach in a UAV-assisted network
consisting of 3 UAV-mounted MEC servers and 7 ground
MEC servers. Fig. 2 illustrates the evolution of a representative
user’s data offloading b; ; at each MEC server (either ground
or UAV-mounted), as a function of the DCP algorithm'’s itera-
tions required for convergence to the PNE. It is clearly shown
that the convergence is achieved in a few iterations (i.e., less
than 4), starting from any feasible initial random value, while
the corresponding average time that the user needs to deter-
mine its optimal offloading strategy till convergence is
achieved, is relatively low as well, as demonstrated on the
upper horizontal axis of Fig. 2 (for practical purposes less than
0.05 sec). Similarly, Fig. 3, presents the corresponding experi-
enced energy and time overhead of a representative user,
where we observe that the corresponding values at the PNE
satisfy the user’s computation task’s latency and energy
requirements. Fig. 4 presents the average satisfaction utility
and corresponding expected overhead of all the users by
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Fig. 4. Convergence of users’ average expected overhead and satisfac-
tion utility by offloading data to all the MEC servers.
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Fig. 5. Three indicative users’ total offloaded data as a function of their
personal parameters.
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Fig. 6. Three indicative users’ satisfaction utility as a function of their per-
sonal parameters.

offloading data to all the MEC servers. The results illustrate
that after the convergence to the optimal data offloading point,
the users experience high levels of satisfaction and low levels
of expected overhead.

In Figs. 5 and 6, we present the total offloaded bits and the
satisfaction utility respectively, of three representative users
by examining the effect of seven different personal parame-
ters, i.e., overall average distance from all the MEC servers
d;, local computing capability /¢ and energy consumption [,
total amount of bits B;, loss aversion parameter k; and the
latency ¢; and energy e; requirements. It is noted that every
parameter’s value under examination is assigned in an
ascending order to the users with ID 1,100, and 200, while
when we examine the impact of each one of these parame-
ters, all other parameters’ values remain the same for all
three users. The results reveal that the less distant is the user
from the UAVs, the more data will offload to them, as less
power is needed for its transmission resulting in lower
energy overhead. For this reason, in Fig. 6 it is observed that
the user with ID 200, who is the most distant from the MEC
servers, experiences the lowest satisfaction utility, as it off-
loads the smallest amount of data and processes the majority
of its data locally. Regarding the impact of the local comput-
ing capability user 1, who has the lowest [f, tends to offload

the greatest amount of data compared to the other users,
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resulting to a greater satisfaction utility. The exact opposite
impact is observed for the local energy consumption [{. With
reference to the loss aversion parameter k;, the greater its
value is, the more loss-averse the users appear, thus user
200, who has the greatest k; value, offloads the smallest
amount of data and experiences a lower satisfaction utility.
In addition, the more data B; a user needs to process, the
more data it will offload to the MEC servers and process
locally, thus, it receives low satisfaction utility. Finally, if
the user’s latency and energy requirements are relaxed,
then the user will prefer to offload less data to the MEC
servers, resulting to high levels of satisfaction utility, as
the total local overhead is low and satisfies the users.

A study from the system’s perspective is also presented in
Figs. 7, 8, and 9 considering the threshold data value B,, the
UAV-mounted MEC server’s computation capability ", and
the average distance ds of the UAV-mounted MEC server s
from the users. It is noted that every examined parameter’s
value is assigned in an ascending order to the UAV-mounted
MEC servers with ID 1, 2, and 3, while when we examine the
impact of each one of these parameters, all other parameters’
values remain the same for all three UAV-mounted MEC serv-
ers. In particular, it is observed that the greater the UAV-
mounted MEC servers’ computational capability FU is, the
more data it collects from the users (Fig. 7), as it appears as a
more appealing choice, however its probability of failure
increases (Fig. 8). Also, the greater is the UAV-mounted MEC
server’s average distance d from the users, the less data it col-
lects, as the users must consume more energy to send their
data. Moreover, for larger values of the UAV-mounted MEC
server’s operational threshold B;, the UAV appears more
robust in terms of the amount of data that it can process, thus,
its probability of failure is lower (Fig. 8). Also, as expected the
energy that each UAV-mounted MEC server consumes to pro-
cess the users’ offloaded data increases with respect to the total
amount of data (Fig. 9).
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Finally, Fig. 10 presents the total offloaded bits that each
ground MEC server received by studying the impact of its
computational capability f¢ and its average distance d
from the users (the values f®and d; increase with respect to
the ascending ID of the ground MEC server). A similar
trend with the UAV-mounted MEC servers is observed, i.e.,
the greater f¢ a ground MEC server has or the less distant
is from the users, the more data it receives.

6.2 Heterogeneous Users - Loss Aversion

In this section, the impact of the users’ heterogeneous loss
aversion behavior on their data offloading decisions and
achieved satisfaction utility is evaluated. Specifically, a het-
erogeneous scenario, where the users are associated with
different loss aversion parameters k;, is compared against a
homogeneous scenario, where all the users have the same
exactly loss aversion parameter (equal to the average value
of the corresponding k; parameters in the heterogeneous
scenario). It is reminded that the more loss averse is the
user’s behavior, the greater is the loss aversion parameter
k;. Thus, those users offload less amount of data to the
UAV-mounted MEC servers (Fig. 11), their satisfaction util-
ity is lower and their expected overhead from the UAV-
mounted MEC servers is higher (Fig. 12). Regarding the risk
seeking users, they tend to offload more data to the UAV-
mounted MEC servers resulting in high probability of fail-
ure (Fig. 11), thus making the overall system unstable and
prone to failure.

Furthermore, in Fig. 11, it is observed that the heteroge-
neous population led to higher levels of UAV-mounted
MEC servers’ congestion compared to the homogeneous
population, as both the average amount of offloaded data to
the UAV-mounted MEC servers and the corresponding
average probability of failure of the latter ones increase. In
Fig. 12, it is shown that the heterogeneous users, by
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offloading more data to the UAV-mounted MEC servers,
they experience a greater satisfaction utility and a lower
expected overhead.

6.3 Comparative Analysis
In this section, a detailed comparative evaluation of the pro-
posed framework is performed against five other alternative
data offloading strategies: (i) Non prospect-theoretic (Non-
ProsTheor) - users minimize their expected overhead by the
UAV-mounted MEC servers via determining their best
response strategy b;, (ii) Full Game-theoretic Offloading
(FullGameOff) - each user offloads the whole amount of its
data to one UAV-mounted MEC server through a formula-
tion of a non-cooperative game in order to minimize its
expected overhead, (iii) Single UAV-mounted MEC servers
environment (SingleUAV) - characterized by the average
capabilities of all the UAV-mounted MEC servers, (iv) Each
user processes all its data locally (LocalExec), (v) Each user
determines randomly its data offloading strategy (Random).
Figs. 13 and 14 illustrate the user’s average expected
overhead and the UAV-mounted MEC servers’ average
probability of failure, respectively, for each of the aforemen-
tioned approaches. It is evident that our proposed data off-
loading approach achieves the best results while the
SingleUAV, LocalExec and Random demonstrate the worst
performance. Specifically, in the LocalExec approach, the
users experience the highest expected overhead, as they
process their computation task locally. In the Random
approach, the users offload partially their data to randomly
selected MEC servers (UAV-mounted or ground MEC serv-
ers), thus, even if the users experience a lower expected
overhead than the LocalExec approach, the probability of
the UAV-mounted MEC servers’ failure remains high.
Regarding the SingleUAV approach, the users offload their
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Fig. 13. Users’ average expected overhead for different comparative
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Fig. 14. UAVs’ probability of failure for different comparative scenarios.

data to the single UAV-mounted MEC server and share its
computational capabilities. Thus, they experience a higher
expected overhead and a greater probability of failure
(Figs. 13 and 14) compared to the non prospect-theoretic
and the full game-theoretic data offloading approaches.

The Non prospect-theoretic approach achieves the sec-
ond best performance after our proposed framework, as the
users partially offload their data to the UAV-mounted MEC
servers and they aim to minimize their expected overhead.
However, they do that in an agnostic manner with respect
to the guaranteed performance that they could get if they
execute their applications in the safe resources, i.e., in the
ground MEC servers and in their mobile devices. On the
contrary, our prospect-theoretic framework results in lower
average probability of failure and average expected over-
head, by taking these aspects into consideration during the
decision-making process. Finally, in the Full Game-theoretic
Offloading, the users select a UAV-mounted MEC server to
offload their whole computation task, without taking
advantage of the partial offloading to multiple UAV-
mounted MEC servers, thus concluding to a higher proba-
bility of failure compared to the Non prospect-theoretic
approach.

6.4 Performance Analysis for Different User
Topologies

In this section, we further examine the performance of the
proposed framework for different and varying topological
characteristics, and in particular with reference to the
increasing number of users, as well as to their position dis-
tribution within the examined environment. Specifically,
Fig. 15 shows the users” average expected overhead and the
corresponding actual execution time of the DCP algorithm
as a function of the number of users in the examined system.
The results reveal that for a five-fold increase in the number
of users (i.e. from 200 to 1000 users), the corresponding
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average expected overhead that the users experience,
increases by approximately 13 percent. This slight increase is
owed to the fact that the ground and the UAV-mounted MEC
servers are required to process more computation tasks (off-
loaded by the users), thus, they become more congested in
terms of computation processing. Based on these results, we
observe that the proposed framework achieves to serve the
users in a satisfactory manner, even when considering a large
scale computing environment. Moreover, it is noted that this
is achieved while noticing approximately a five-fold increase
in the corresponding execution time of the DCP algorithm,
essentially demonstrating an almost linear increase of the
execution time with respect to the number of users.
Additionally, Fig. 16 illustrates the users’ average
expected overhead and the execution time of the proposed
framework, for different topological characteristics. We
focus on investigating our proposed framework’s behavior
with respect to different users’ position distributions within
the two-dimensional grid, while still maintaining the afore-
mentioned base experimental setting, ie., U =200,G =
7, F = 3. In particular, except from the users’ random and
uniform position distribution scenario, we also consider
several Poisson distributions with different values of vari-
ance, i.e., A parameter. The corresponding results reveal
that the DCP algorithm execution presents a stable behavior
and performance, as indicated by the fact that the execution
time is rather insensitive to the users’ position distribution.
Furthermore, it is observed that as the users are distributed
more closely to each other, as reflected by lower values in
the Poisson parameter ), their average expected overhead
increases. The latter phenomenon is due to the fact that the
more closely among each other are the users distributed,
they tend to have similar distances from the MEC servers,
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thus, making similar offloading decisions, and accordingly
over-congesting the corresponding servers that are close to
them. The opposite holds true for larger values of the Pois-
son parameter ),

6.5 Discussion and Guidelines

In this following, insights and guidelines regarding the
operation and key features of the proposed framework are
summarized, highlighting the user and system points of
view.

1. (Users” perspective) The proposed framework enables
the users to satisfy their energy and latency require-
ments, maximize their satisfaction utility, and con-
verge to a stable data offloading equilibrium within
few iterations. It is demonstrated that the users’
physical and risk-aware characteristics have a signif-
icant impact on their data offloading decisions. Spe-
cifically, the users tend to offload more data to the
UAV-mounted MEC servers, if they (i) are less dis-
tant from them; (ii) have stricter energy and latency
requirements; (iii) present more risk seeking behav-
ior; and (iv) have low local computing capability.
The more data the users offload to the UAV-
mounted MEC servers, the greater is their satisfac-
tion utility, except for the cases of (i) having relaxed
latency and energy requirements, where the local
processing is more beneficial, and (ii) having a large
amount of data to process, where inevitably a large
portion of them will be processed locally resulting in
low satisfaction utility.

2. (System’s perspective) The UAV-mounted and ground
MEC servers receive more data, if they have high
computation capability and small average distance
from the users. Also, increased amount of data is
received by the UAV-mounted MEC servers if their
operational threshold (i.e., amount of data that they
can concurrently process) is high, in which case they
present high robustness to failure. The more data the
UAV-mounted MEC servers receive, the higher is
their probability of failure and the energy consump-
tion to process them.

3. The more loss averse the users are, the more data
they process locally, the less satisfaction utility they
perceive, the more overall overhead they experience,
and the less they contribute to the UAV-mounted
MEC servers’ failure, as they exhibit a conservative
data offloading behavior.

4. The users’ heterogeneity in their loss averse behavior
increases the UAV-mounted MEC servers’ probabil-
ity of failure.

5. The combined consideration of the (i) users’ physical
and risk-aware characteristics, (ii)) UAV-mounted
and ground MEC servers characteristics, (iii) users’
distributed and autonomous decision-making, and
(iv) users’ ability to partially offload their data to
multiple MEC servers (while process part of them
locally on their devices), concludes to superior data
offloading strategies, users’ satisfaction, and sophis-
ticated system’s resources exploitation, compared to
other alternative approaches.
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7 CONCLUSION

In this paper, a novel approach towards determining the
user optimal data offloading strategy within a complex
MEC environment consisting of both ground MEC servers
and UAV-mounted MEC servers is introduced. Given the
inherent computing uncertainty introduced, the UAV-
mounted MEC servers are treated as CPRs, and the users
act as prospect theoretic decision-makers, aiming to maxi-
mize their perceived prospect theoretic utility, while at the
same time minimize the time and energy overhead by the
ground MEC servers and the local execution. Accordingly,
the risk-aware data offloading problem is formulated as a
non-cooperative game among the users and the existence
and uniqueness of the corresponding Pure Nash Equilib-
rium point (PNE) is proven. A low complexity distributed
algorithm converging to the PNE is introduced, while
detailed numerical results that demonstrate our frame-
work’s operation and superiority are presented.

Our current and future work focuses on studying the
task offloading computation problem under a variety of
probability of failure functions, e.g., Poisson process of the
arrival data from all users, that also capture the uncertainty
stemming from the rapidly changing communication envi-
ronment in a metropolitan area. Moreover, we are interested
in investigating the combination of the aforementioned
framework with the optimal placement of the UAV-
mounted and ground MEC servers, by considering several
factors and aspects, such as coverage area, overall energy
availability of the UAV-mounted MEC servers, computation
capabilities, UAVs mobility, etc.
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