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Abstract—The proliferation of multiaccess edge computing
(MEC) paradigm has created a challenging multiuser–multiserver–
multiaccess edge computing competitive environment, which
brings the problem of data offloading decision-making to the fore-
front of research. In this article, we address this issue while jointly
studying the impact of the user behavioral characteristics and the
MEC servers pricing policies on determining the optimal user data
offloading strategies. Prospect theory is exploited to reflect the
user satisfaction and subjectivity from the data offloading, while
the MEC servers’ probability of failure owing to the potential
overexploitation by the users, is modeled via the theory of tragedy
of the commons. A multileader multifollower Stackelberg game
is formulated among the MEC servers (leaders) and the users
(followers), to determine the servers’ optimal pricing policies and
the users’ optimal data offloading strategies. The users’ data of-
floading decision-making is formulated as a noncooperative game
among them and a Nash equilibrium is determined, while the
MEC servers’ optimal computing service prices are obtained either
through a semiautonomous game-theoretic approach, or through
a fully autonomous reinforcement learning-based approach. The
performance evaluation and demonstration of the superiority of
the proposed framework against other benchmarking alternatives
is achieved via modeling and simulation.

Index Terms—Edge computing, game theory, network
economics, prospect theory, reinforcement learning (RL).

I. INTRODUCTION

THE proliferation of mobile devices, such as smart phones,
wearable devices, and Internet of Things (IoT) sensor

nodes, renders the explosive growth of data and induces the
emergence of computation-intensive and latency-critical appli-
cations, such as virtual and augmented reality, online gaming,
surveillance, and others. Toward supporting those resource-
hungry applications, multiaccess edge computing (MEC) is
envisioned as a promising computing paradigm [1]. In such a

Manuscript received 24 July 2021; revised 10 January 2022 and 14 June 2022;
accepted 3 July 2022. Date of publication 19 July 2022; date of current version
9 December 2022. This work was supported in part by the Hellenic Foundation
for Research and Innovation (H.F.R.I.) under the “1st Call for H.F.R.I. Research
Projects to support Faculty members and Researchers and the procurement of
high-cost research equipment grant” (Project Number: HFRI-FM17-2436). The
work of Eirini Eleni Tsiropoulou was supported by the NSF under Grant CRII-
1849739. (Corresponding author: Symeon Papavassiliou.)

Giorgos Mitsis and Symeon Papavassiliou are with the School of Electrical
and Computer Engineering, National Technical University of Athens, 15780
Athens, Greece (e-mail: gmitsis@netmode.ntua.gr; papavass@mail.ntua.gr).

Eirini Eleni Tsiropoulou is with the Department of Electrical and Computer
Engineering, University of New Mexico, Albuquerque, NM 87131 USA (e-mail:
eirini@unm.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/JSYST.2022.3188997, provided by the authors.

Digital Object Identifier 10.1109/JSYST.2022.3188997

setting, the users are able to offload their computation-intensive
tasks to resource-rich infrastructures, i.e., MEC servers, which
are usually colocated with macro base station (MBS) or un-
manned aerial vehicles (UAVs). Thus, the development of op-
timal data offloading policies have recently received significant
attention from industry and academia [2].

In parallel, the behavioral and economic modeling of the
users’ data offloading schemes, while accounting for the
users behavioral decision-making characteristics and the MEC
servers’ computing service pricing policy, though of high practi-
cal importance, is still at an infant stage of study due to the inher-
ent complexity and multidimensional nature of the problem [3].
In this article, we aim at exactly addressing this issue, by jointly
studying the interplay of the users behavioral characteristics
and the MEC servers pricing policies, as well as their impact
on determining the optimal users data offloading strategies. The
key objective is to simultaneously maximize the users’ perceived
service satisfaction and the MEC servers’ profit. The introduced
novel behavioral and economic modeling is performed based
on the principles of prospect theory and network economics,
while the users’ and MEC servers’ distributed decision-making
is facilitated by game-theoretic (GT) and reinforcement learning
(RL)-based approaches.

A. Related Work

Significant research efforts have been lately devoted to the
investigation of the problem of multiuser and multiserver data
offloading in MEC environments, under various settings. In [4],
the authors introduced a multivariable centralized minimization
problem of the users’ energy cost and experienced latency by
jointly determining the optimal users’ data offloading strategies,
users’ scheduling, and resource allocation. In [5], the authors
focused their study on small cell networks, where each small
cell’s access point is equipped with an MEC server. In particu-
lar, the authors determined the users’ optimal data offloading
strategies in a distributed manner via a GT approach based
on the theory of potential games, while also addressing the
minimization problem of the users’ energy consumption and
service delay. The data offloading problem in vehicular networks
is studied in [6], where the MEC servers reside at the road side
units. A combination of convex optimization and a GT approach
is introduced to optimize the system wide profit of both the
vehicles and the network operator via determining the optimal
communication channel allocation, data offloading, and task
scheduling at the MEC servers. A similar approach is introduced
in [7] enabling the patients’ medical nodes to offload data to
MEC servers.
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Apart from the GT approaches, RL-based techniques have
also been devised in literature to address the data offloading
problem [8]. In [9], a budged-limited multiarmed bandit problem
is formulated in order to enable the users to select the MEC
server that minimizes their latency and energy consumption, as
well as the corresponding amount of offloaded data. A similar
problem formulation is introduced in [10] with application on
vehicular networks. Specifically, the authors consider the ve-
hicles’ mobility, the MEC servers’ heterogeneous computation
resources, and the vehicles diverse computation demand in the
designed multiarmed bandit learning algorithm. Moreover, an
ε-greedy nonstationary multiarmed bandit-based scheme for
online data offloading is introduced in [11] targeting at the
minimization of the users’ energy consumption and latency,
and the MEC servers’ computation resource usage optimiza-
tion. Also, a fog-enabled federated learning framework is in-
troduced in [12] to enable the distributed learning for sup-
porting delay-sensitive applications in resource-constrained IoT
systems. Moreover, Stackelberg games have been widely used
to model the economic-based interaction between two entities
in a hierarchical architecture [13], [14]. In [15], a Stackelberg
game is formulated among the MEC server and the wireless
body area network users in order to derive a joint cost and
energy efficient task offloading mechanism. A novel layered
optimization approach is proposed in [16] to minimize the users’
overall delay by jointly optimizing the users’ offloaded tasks and
their transmission time.

On the other hand, rather limited research effort has been de-
voted to the problem of optimal computing service pricing from
the MEC servers’ side. In [17], several types of pricing policies,
such as multidimensional pricing, penalty pricing, and discount
pricing, have been proposed to study the different number of
virtual machines that a cloudlet can accommodate. Aiming at
minimizing the users’ cost, while jointly maximizing the edge
cloud’s profit, a two-side game is introduced in [18] and [19] to
determine the optimal MEC servers’ price and the users’ data
offloading strategies. In [20], a static pricing-based approach is
proposed to guide the users’ cooperation with the MEC servers
to conclude to a stable operational point. A dynamic pricing
mechanism is devised in [21] to minimize the overall MEC
system’s cost, while guaranteeing the satisfaction of the users’
quality of service (QoS).

It should be noted that all the aforementioned research works
consider the users as rational decision-makers aiming at maxi-
mizing their perceived utility, while interacting with the MEC
servers. However, in a realistic edge computing environment,
the users typically demonstrate a risk-aware decision-making
behavior, where the risk primarily stems from the scarcity due
to the potential overexploitation of the computation resources
available to the MEC servers. Prospect theory has been tra-
ditionally used in literature to capture the users’ risk-aware
behavior as compared to the expected utility theory [22]. Toward
capturing the users’ risk-aware decision-making, prospect the-
ory has also been recently adopted in MEC environments [23].
However, these research attempts have been realized under the
assumption that all the users weigh the MEC servers’ probabil-
ity of failure to serve their computing requests in exactly the
same manner. This problem has been studied in ground-based
MEC systems [3] or UAV-assisted MEC systems [24], while
accounting for different imposed communication constraints
or static pricing models [25]. Nevertheless, in these research
works the joint consideration of the users to MEC servers
optimal association and the MEC servers’ optimal price decision

regarding their offered computing services to the users is
not treated. The latter problem, along with the adoption of a
weighted probability that captures the distorted perception of
the probability spectrum proposed by the prospect theory within
the MEC environment, is part of the novelty of our work.

Prospect theory has been also combined with the theory of
the tragedy of the commons [26] to capture the failure of the
common pool resources (CPR), e.g., MEC servers, to serve
the users due to their overexploitation [27]. In general, the
principles of prospect theory and the tragedy of the commons
have already been applied in several other research fields, such
as dynamic spectrum management [28], [29], load balancing in
smart grid systems [30], antijamming communications in cogni-
tive systems [31], fog computing security [32], and network se-
curity [33]. In [34], prospect theory is combined with blockchain
to determine the users’ optimal data offloading toward jointly
maximizing the utilities of both the miner devices and the MEC
server providers. Also, in [24], a UAV-assisted MEC system is
examined, and the users’ optimal data offloading is determined
based on a GT approach, while accounting for the risk of the
MEC servers’ failure due to overexploitation.

B. Contributions and Outline

In this article, we introduce a novel dynamic behavior and
price-aware edge computing model to determine the users’
optimal data offloading strategies and the MEC servers’ optimal
computing service pricing. One key novelty of our introduced
model and approach is that the aforementioned objective is
achieved while accounting for the users’ risk-aware decision-
making due to the potential MEC servers overexploitation. Even
though prospect theory has been recently used to capture the
usage risk-aware behavior in MEC systems, very little effort has
been devoted to the problem of quantifying the sources and levels
of risks in users’ decision-making. In this article, toward achiev-
ing the latter goal, we jointly examine the principles of tragedy
of the commons along with the users’ probability weighting
phenomenon to provide a more realistic and holistic approach
regarding the users’ risk-aware decision-making process. The
key contributions and novelties that differentiate our article from
the rest of the literature, are summarized as follows.

1) A multiuser–multiserver–multiaccess edge computing en-
vironment is considered. The MEC servers’ probability
of failure due to overexploitation by the users is captured
via the theory of the tragedy of the commons. In contrast
to the existing literature, in this work, we account for
the probability weighting phenomenon, where the users
tend to overestimate the likelihood of events with low
probability of failure and underweight outcomes with high
probability of failure.

2) To account for the users’ risk-aware decision-making
and behavior, their satisfaction from the data offloading
and processing is captured by appropriately designed
prospect-theoretic utility functions. Moreover the MEC
servers’ profit by serving the users’ computation demand
is designed as a function of the MEC servers’ computing
service pricing.

3) The association problem between users and MEC servers
is jointly treated with the data offloading problem, which
comes in contrast to existing alternative approaches in
literature, where the server selection and data offload-
ing processes are performed in a disjoint and uncorre-
lated manner. To achieve this, a multileader–multifollower
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Stackelberg game is formulated among the MEC servers
(leaders) and the users (followers) to determine the MEC
servers’ optimal computing service pricing policies and
the users’ optimal data offloading strategies. The goal of
the users is to maximize their expected prospect-theoretic
utility, while accounting for the servers’ pricing policies
and their probability to fail while serving the users due to
potential overexploitation of their computing resources.
The users’ data offloading decision-making is formulated
as a noncooperative game among them and a Nash equi-
librium (NE) point is determined.

4) The MEC servers’ optimal computing service pricing
policies are obtained following two alternative decision-
making mechanisms, that present different benefits and
tradeoffs. The first one introduces a semiautonomous
GT approach, while the second one provides for a fully
autonomous RL-based approach in order to tackle the
common problem of utility-specificity in GT approaches.

5) A detailed numerical analysis and evaluation is real-
ized via modeling and simulation, to quantify the per-
formance of the proposed edge computing framework
under both decision-making alternatives and models (i.e.,
GT and RL-based ones), in terms of convergence and/or
operation efficiency. Furthermore, a comparative evalua-
tion of the proposed framework against other alternative
data offloading benchmarking strategies is presented and
discussed.

The rest of the article is organized as follows. Section II
presents the overall system model and an overview of the op-
eration of the proposed framework. In Section III, the users’
data offloading problem is formulated and solved based on a GT
approach. In Section IV, the MEC servers’ optimal computing
service pricing policies are determined based on the GT and
RL-based alternatives. In Section V, simulation and compar-
ative numerical results are illustrated and analyzed. Finally,
Section VI concludes this article.

II. MULTIACCESS EDGE COMPUTING

A. Behavior and Price-Aware Modeling

We consider a multiuser–multiserver–multiaccess edge com-
puting environment, consisting of a set of users N = {1, . . . ,
n, . . . , |N |} and a set of MEC servers S = {1, . . . , s, . . . , |S|}.
Each user requests a service that is characterized by a compu-
tation task Jn = (bn, in), where bn [bits] denotes the input bits
that need to be processed and in [CPU cycles] the computation
demand of the user’s service, expressing the number of necessary
CPU cycles to process the bn bits. Each user can select one
server to offload bMEC

n,s [bits] amount of data, while the rest of the
data, i.e., bn − bMEC

n,s , are processed locally on the user’s device.
The user’s device computation capability is denoted as fn [CPU
cycles/sec] and the consumed energy per CPU cycle to locally
process the user’s data is γn [J/CPU cycles]. The total processing
time for each user’s computation task, if it is fully processed
locally, is tn = in

fn
[s] and the corresponding consumed energy

is en = γnin [J]. Each MEC server charges ps [$/bit] monetary
units per bit of processed data to perform the computing.

The computing capabilities of the MEC servers are assumed to
be shared among the users, thus, they are treated as a CPR. Given
that the CPR is excludable, rivalrous, and can be commonly
accessible to all users, the phenomenon of the tragedy of the
commons may arise [26]. Thus, the MEC servers may fail to

serve the users due to potential overexploitation, and no user will
enjoy the computing capabilities of the server that failed. The
users may experience risks in their decision-making process,
i.e., to which server to offload part of their data, which may
stem from either the complete failure or the depletion of the
computing resources, caused by the potential (over)exploitation
of the CPR, i.e., fragility of the shared resources. In our pro-
posed framework, each user reacts in a personalized risk-aware
manner based on its perception of the MEC servers’ computing
resources’ usage. The majority of the existing literature applies
centralized admission control mechanisms to allow the users
to access the MEC servers’ computing resources. However, it is
well known that a centralized admission control approach suffers
from several drawbacks, e.g., single point of failure, control and
communication overhead, and privacy concerns. Moreover, it
is highlighted that in emerging complex MEC systems, due to
the fact that different MEC servers may be owned by different
service providers, the solution of a centralized entity performing
admission control and task scheduling would not be realistic, or
even feasible is several cases.

Based on the general principles of prospect theory, the users
present different behavior (i.e., utility values), expressed as
satisfaction or dissatisfaction, based on the gains or losses they
experience from a service. Specifically, based on the loss aver-
sion property, the users experience greater dissatisfaction in the
case of losses compared to the perceived satisfaction from gains
of the same magnitude. The aforementioned gains and losses
are determined with respect to a predefined reference pointUn,0,
which in our case is defined asUn,0 = bn

tnen
, reflecting the user’s

satisfaction from processing its computation tasks on its device.
The latter captures the user’s perceived utility if it processed the
whole amount of its data locally.

Therefore, the user’s prospect-theoretic utility by offloading
bMEC
n,s data to an MEC server is defined formally as follows:

Pn,s(Un,s) =

{
(Un,s − Un,0)

αn , if Un,s ≥ Un,0−kn(Un,0 − Un,s)
βn , otherwise (1)

whereαn, βn ∈ [0, 1], and kn ∈ R+. The risk-aware parameters
αn, βn reflect the users’ risk-averse behavior in gains, and risk-
seeking behavior in losses, respectively. Also, the loss aversion
parameter kn captures the way that the user weighs the losses
and gains. Specifically, the user weighs the gains more than
(kn < 1) or equal to (kn = 1) the losses, while the opposite
holds true if kn > 1. In the following analysis, without loss of
generality, we consider that the users’ risk-aware parameters are
equal, i.e., αn = βn∀n ∈ N . The user’s actual utility function
Un,s(b

MEC
n,s ) captures the user’s actual satisfaction from: either 1)

processing all its data locally on its device [first branch of (2)],
or 2) offloading part of its data to an MEC server, while the latter
one survives [second branch of (2)], or 3) offloading part of its
data to an MEC server, while the latter one fails [third branch of
(2)]. The user’s actual utility function is defined as follows:

Un,s(b
MEC
s ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

bn
tnen

, if bMEC
n,s = 0

bn−bMEC
n,s

tnen
+ bMEC

n,s R(Ds)− cs(b
MEC
n,s ), if bMEC

n,s �= 0 &
s survives

bn − bMEC
n,s

tnen
− cs(b

MEC
n,s ), if bMEC

n,s �= 0 & s fails

(2)
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where bMEC
s denotes the data offloading vector of all the users,

and cs(bMEC
n,s ) denotes the user’s cost by processing its data to

the MEC server s. The latter is obtained based on the announced
price ps [$] by the MEC server s and the corresponding normal-
ized amount of its offloaded data. Therefore, the user’s cost can
be formally defined as follows:

cs
(
bMEC
n,s

)
= psin

bMEC
n,s

bn
. (3)

The physical meaning of (3) is that, as expected, a user
experiences a higher cost from the MEC server either due to
a high computing service price or if it requests a large amount
of data to be processed following the principles of proportional
fairness or if the data are characterized by high computation
demand to be processed at the MEC server. For fairness purposes
among the users, we consider that the MEC server announces
the same price ps for all the users that offload their computation
tasks to it for further processing. Nevertheless different prices
are announced by the different servers to the users in order to
promote competition. Furthermore, the second branch of (2)
is formulated based on the satisfaction that a user experiences
from offloading part of its data to the MEC server (first term),
while considering the cost that is charged with to process its
data at the server (third term) and the rate of return R(Ds) that
it experiences by having its data bMEC

n,s processed at the edge
(second term). The rate of return implicitly reflects the value
that the user gains from to the remote execution of its task. In
particular, the rate of return function R(Ds) is assumed to be
continuous and monotonically decreasing with respect to the
users’ normalized effective demand Ds from the server (for-
mally defined below). Thus, if the users’ normalized effective
demand Ds is high, meaning that the MEC server’s computing
capabilities are overexploited, the satisfaction that the users
experience by processing their data to the server is decreased
due to an increased data processing delay. For demonstration
purposes, in the following analysis, the MEC servers’ rate of
return function is formulated as follows:

R(Ds) = 2− eDs−1. (4)
The users’ normalized effective demand Ds from the MEC

server s is a sigmoidal function that maps the users’ actual

computing demand ds =
∑|N |

n=1 in
bMEC
n,s

bn
from the MEC server

s to the interval [0,1] and is a continuous and strictly increasing
function with respect to ds, defined as follows:

Ds(ds) = −1 +
2

1 + e−θsds
. (5)

The parameter θs > 0 is a positive constant which is used to
calibrate the sigmoidal curve to appropriately capture the MEC
servers’ computing capabilities. In a practical implementation,
the value of the normalized effective demandDs is broadcasted
by the server to the users, providing an indication of how overex-
ploited an MEC server is, in order to further facilitate the users’
distributed decision-making process. Given the CPR nature of
the MEC server’s computing capability, due to the joint exploita-
tion from multiple users that offload their data to the same server,
the latter one is characterized by a probability of failurePrs(Ds)
depending on the users’ normalized effective demand Ds. The
MEC server’s probability of failure is a continuous and strictly
increasing function with respect to the users’ demand Ds and
can be indicatively defined asPrs(Ds) = D2

s . It is noted that the
latter function is adopted only for demonstration purposes, while
any continuous and strictly increasing probability of failure

function can be adopted without limiting the applicability of
the rest of the analysis.

Based on the previous analysis and discussion, and for sim-
plicity in the presentation, let us denote as U surv.

n,s and U fail
n,s the

second and third branch of (2), respectively. Then the user’s
prospect-theoretic utility function, as expressed in (1), can be
rewritten as follows:

Pn,s(b
MEC
n,s ,b

MEC
−n,s)

=

{
P surv.
n,s =

(
U surv.
n,s − bn

tnen

)αn

, if U surv.
n,s ≥ Un,0

P fail
n,s = −kn

(
bn

tnen
− U fail

n,s

)αn

, otherwise
(6)

where bMEC
−n,s denotes the data offloading vector of all the users

except for user n to the MEC server s. One of the key principles
and findings of prospect theory, states that the users tend to
overestimate the likelihood of events with low probability of fail-
ure and underweight outcomes with high probability of failure,
i.e., π(Prs) > Prs for small Prs values and π(Prs) < Prs
for large Prs values. This latter observation of how humans
behave under risk-aware decision-making processes is defined as
the probability weighting phenomenon. The prospect-theoretic
probability weighting function π(Prs) of outcomes with differ-
ent likelihood to occur is defined as follows [35]:

π(Prs) = e−(− ln(Pr))γ (7)

where γ ∈ R+ denotes the psychological distortion parameter.
Considering the aforementioned probabilities, the user’s ex-

pected prospect-theoretic utility function from offloading part
of its data to a selected MEC server is defined as follows:

E(Pn,s(b
MEC
n,s ,b

MEC
−n,s)) = P surv.

n,s (1− π(Prs)) + P fail
n,sπ(Prs).

(8)
Focusing on the MEC servers’ side, each MEC server an-

nounces the price ps for serving the user’s computing requests,
while bearing an operational cost κs [$] to process the data
and support its operation. Each MEC server’s reward from
participating in the MEC environment is defined as

R(ps) = Bs(ps − κs) (9)

whereBs =
∑|N |

n=1 b
MEC
n,s is the total amount of offloaded data to

the MEC server s. Focusing on the network economics-based op-
eration of an MEC server, we make the following observations.
An MEC server naturally tends to increase its announced priceps
if: 1) its operational cost is high, in order to sustain some profit
2) it processes a large amount of data, reaching its maximum
capacity BMAX [bits] in terms of data that can simultaneously
process, in order to avoid its overexploitation and even failure
in the worst case scenario, and 3) the rest of the MEC servers
increase their price p−s = [p1, . . . , ps−1, ps+1, . . . , p|S|], in or-
der to remain competitive in the edge computing market. Based
on these observations and interdependencies, we define the
MEC server’s payoff function that captures the aforementioned
aspects, as follows:

W (ps) = −
(
ps − Bs

BMAX
κs

∑
∀j �=s pj

ps

)2

. (10)

B. Edge Computing Operation

In this section, we provide an overview of the operation of
the proposed behavior and price-aware multiuser–multiserver–
multiaccess edge computing system. We formulate its operation
as a multileader–multifollower Stackelberg game, where the
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Fig. 1. Overview of the proposed framework.

users act as followers, determining their optimal amount of of-
floaded data, and the MEC servers behave as leaders, announcing
their optimal price to provide their computing services to the
users. An overview of the proposed framework’s operation is
presented in Fig. 1.

Initially, the MEC servers select the prices to impose to the
users (e.g., randomly) without any knowledge on the amount of
data that each user is willing to offload. Given the MEC servers’
prices, the users participate in a noncooperative game among
them, in order to determine the server with whom they want to
associate with, as well as the optimal amount of offloaded data.
This is done based on the criterion of each user maximizing its
perceived expected prospect-theoretic utility function, as defined
in (8). The latter outcome in turn acts as input to the MEC
servers, who determine the optimal announced prices to offer
their computing services to the users. It is noted that the optimal
prices of the MEC server are determined with two different
alternatives based on the information availability among the
MEC servers, as well as the methodological learning philosophy
adopted to conclude to the optimal solutions. Specifically, a
semiautonomous GT model and a fully autonomous RL-based
model are introduced and their drawbacks and benefits are
discussed and demonstrated in a comparative manner. The inter-
action among the users and MEC servers is repeated iteratively
until the overall system converges to a Stackeblerg equilibrium,
where the users’ data offloading strategies and the MEC servers’
prices have converged to the optimal values.

III. OPTIMAL DATA OFFLOADING

A. Problem Formulation

In this section, the problem of determining the MEC servers’
selection by the users and the optimal data offloading strategies
is formulated as a distributed optimization problem. Each user
aims at selecting the MEC server that will eventually maximize
the user’s expected prospect-theoretic utility, while in parallel
determining the optimal data offloading strategy. Thus, in our
proposed framework, the association problem between users
and MEC servers is jointly treated with the data offloading
problem. The corresponding optimization problem is formulated

as follows:

max
∀s∈S

{
max
bMEC
n,s

E
(
Pn,s

(
bMEC
n,s ,b

MEC
−n,s

))}
,

s.t. 0 ≤ bMEC
n,s ≤ bn. (11)

Thus, a user selects the MEC server that maximizes the
maximum potential expected prospect-theoretic utility. Toward
determining the latter value, the nested optimization problem
should be addressed as follows:

max
bMEC
n,s∈[0,bn]

E
(
Pn,s

(
bMEC
n,s ,b

MEC
−n,s

))
. (12)

The optimization problem in (12) can be addressed as a nonco-
operative game among the users, who compete among each other
about the MEC server’s computing resources. The noncooper-
ative game is defined as G = [N, {Bn}∀n∈N , {E(Pn,s)∀n∈N}],
where N is the set of users, Bn = [0, bn] is each user’s strategy
set, and E(Pn,s) is the user’s expected prospect-theoretic utility
function. Our goal is to determine a nNE point, where the users
have converged to their optimal data offloading strategies.

Definition 1 (Nash Equilibrium): A data offloading vector
b∗ = (bMEC∗

1,s , . . . , bMEC∗
n,s , . . . , bMEC∗

|N |,s )∀s ∈ S is an NE if the
following condition holds true for every user n ∈ N∀s ∈
S, ∀bMEC

n,s ∈ Bn:

E
(
Pn,s

(
bMEC∗
n,s ,bMEC∗

−n,s

)) ≥ E
(
Pn,s

(
bMEC
n,s ,b

MEC∗
−n,s

))
. (13)

B. Problem Solution

Toward determining the existence of an NE of the noncoop-
erative game G, we show that the game is submodular.

Definition 2 (Submodular Games): The noncooperative game
G = [N, {Bn}∀n∈N , {E(Pn,s)∀n∈N}] is submodular if the fol-
lowing conditions hold true for all users.

1) Bn∀n ∈ N is a compact subset of an Euclidean space.
2) E(Pn,s)∀n ∈ N∀s ∈ S is smooth, submodular in bMEC

n,s

and has nonincreasing differences in (bMEC
n,s ,b

MEC
−n,s), i.e.,

∂2E(Pn,s)

∂bMEC
n,s ∂b

MEC
n,′s

≤ 0.

Theorem 1: The noncooperative game G = [N, {Bn}∀n∈N ,
{E(Pn,s)∀n∈N}] is submodular and has at least one NE point.

Proof: The proof can be concluded following similar rea-
soning and steps, as in [25]. For additional theoretical details
see [36] and [37]. �

Based on Theorem 1, the existence of at least one NE point
is shown. Thus, each user can determine its optimal amount
of offloaded data bMEC∗

n,s to an MEC server s and select the
MEC server s that maximizes its maximum expected prospect-
theoretic utility, as expressed in (11). The NE point can be
practically determined by following a best response dynamics
algorithm [25].

IV. COMPUTING SERVICE PRICING

In this section, our goal is to determine the optimal announced
prices by the MEC servers given the users’ optimal data of-
floading strategies bMEC∗

n,s ∀n ∈ N, s ∈ S. Please recall that these
prices are utilized by the process described in Section III to
determine the users’ optimal data offloading, in an overall it-
erative manner. As defined in (10), each MEC server aims at
maximizing its payoff, and therefore, the optimization problem
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can be defined accordingly as follows:

max
{ps}∀s∈S

W (ps) = −
(
ps − Bs

BMAX
κs

∑
∀j �=s pj

ps

)2

. (14)

The above optimization problem can be treated and solved
in principle based on standard convex optimization techniques,
given that the payoff function W (ps) is concave with respect to
the price ps. However, such an approach would not be realistic
in a real-life implementation, as a centralized entity should
perform the optimization and inform the MEC servers about
their optimal prices. Several reasons, however, would render
such an approach either infeasible or prohibitive in practice.
Indicatively we refer to the fact that MEC servers may be
owned by different providers, the centralized entity making the
decisions is a single point of failure, while significant signaling
overhead would be imposed to the MEC servers to interact with
the centralized entity. Thus, the need of devising an autonomous
decision-making approach for the MEC servers arises. In the
following subsections, we particularly focus on this problem and
present two strategies to determine each MEC server’s optimal
announced price: a semiautonomous GT approach which has
the objective of directly treating the problem in (14), and a fully
autonomous alternative approach of concluding to the optimal
price, based on RL.

A. Game-Theoretic Approach-Semiautonomous
Decision-Making

The optimization problem in (14) can be formulated as a non-
cooperative game G = [S, {Ps}∀s∈S , {W (ps)}∀s∈S ] among the
servers, where Ps = [pmin, pmax] denotes their strategy set and
W (ps) their payoff function. In a realistic computing market,
the minimum pmin and maximum pmax prices could be set by
the market regulations and homogeneously applied to all the
computing service providers. Toward showing the existence
and uniqueness of an NE point, and accordingly determining
their optimal prices p∗s∀s ∈ S, we follow the theory of n-person
concave games, where n = |S|.

Theorem 2 (Existence and Uniqueness of Nash Equilibrium):
The noncooperative game G = [S, {Ps}∀s∈S , {W (ps)}∀s∈S ] is
an n-person concave game and admits a unique NE point, if the
following conditions hold true [38].

1) The strategy sets P1, . . . , P|S| are nonempty, compact,
convex subsets of finite dimensional Euclidean spaces.

2) All payoff functions W (p1), . . . ,W (p|S|) are continuous
on P = P1 × · · · × P|S|.

3) Every payoff function is concave with respect to ps, if all
other strategies are held fixed.

Proof: By definition, the strategy sets P1, . . . , P|S| are
nonempty, compact, and convex, and the payoff function
W (ps) of each server is continuous on ps. Also, it holds true

that ∂2W (ps)
∂p2

s
= −2− 6

( Bs
BMAX

∑
∀j �=s pj)

2

p4
s

< 0, thus, the payoff
function of each MEC server is concave with respect to ps.
Therefore, the noncooperative game G is an n-person concave
game and admits a unique NE point

p∗s =

√
Bs

BMAX
κs

∑
∀j �=s

pj . (15)

�
The NE point in (15) can be determined by implementing a

best response dynamics algorithm. Based on (15), it is observed
that each MEC server needs to be aware of the summation of

the prices of all the rest of the MEC servers existing in the
examined edge computing environment. In practice, the overall
summation of the MEC servers’ prices can be broadcasted by a
market regulatory entity, which monitors the proper operation of
the computing market, to all the MEC servers/edge computing
providers. However, the final decision of the optimal price is
performed by each MEC server in a distributed manner. Thus, the
proposed GT approach to determine the servers’ optimal prices
is characterized as semiautonomous. Based on Theorems 1 and
2, the Stackelberg equilibrium can be derived. The complexity of
proposed GT approach to determine the Stackelberg equilibrium
can be readily obtained asO(|N | ∗ |S| ∗ ite1 ∗A), where ite1 is
the number of iterations needed until convergence of the whole
Stackelberg game, andA the complexity of the algorithm solving
the maximization problem of (12). Detailed results showing the
convergence and complexity to determine the Stackelberg equi-
librium are presented in Section V-A. Toward realizing a fully
autonomous decision-making approach for the MEC servers’
optimal announced prices and alleviating the need for designing
specific utility functions as required in the GT approaches, a RL
model is introduced in the following.

B. Reinforcement Learning Approach-Fully Autonomous
Decision-Making

The proposed RL-based model aims to generate the highest
profit for the servers without requiring any knowledge on how
their choice affects the amount of data offloaded to them or
the pricing of the other servers; the decisions are achieved by
simply observing the effects that each server’s actions have
on its own profit. Toward achieving this goal, we model the
decision-making problem as a multiarmed bandit problem [39],
that focuses on solving the exploration–exploitation dilemma
of a learner (server s) willing to find the best action (price
ps) that maximizes his perceived reward R(ps). It should be
noted that the multiarmed bandit is a special case of the Markov
decision process (MDP) in which there is only one state, a set of
actions, i.e., prices, and a reward gained by selecting an action
(9). Thus, the multiarmed bandit is considered as stateless [40],
or equivalently as an one-state MDP. In the multiarmed bandit
problem, each action provides a random reward from a probabil-
ity distribution specific to the action and the MEC server selects
the action that generates the highest reward. During this process,
a balance should be kept among exploiting the actions that have
already been found to perform well and exploring new actions
in order to gather more information on the expected reward of
the rest of the actions.

Initially, we discretize the pricing strategy space Ps =
[pmin, pmax] in distinct actions within a range of a minimum
and a maximum price, thus having a set A of M actions A =
{a1, . . . , am, . . . , aM} where am ∈ [pmin, pmax]. Each server
chooses at each timeslot a pricing action from the action set
A based on which the users play their data offloading game.
Thus, at the end of the timeslot the servers observe the obtained
reward according to (9), and can decide on the pricing action of
the next timeslot.

In order to solve the multiarmed bandit problem, we adopt the
upper confidence bound algorithm (UCB1) [41] that has been
proven to have a bounded regret. The regret [42] measures the
efficiency of the algorithm and corresponds to the difference
between the cumulative reward of the proposed action and that
of the best possible action. Apart from the regret guarantees,
the proposed algorithm allows to fine-tune the range of the
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confidence interval and enables for better exploration by the
MEC servers, which increases the probability of choosing less
explored actions.

The main idea of the UCB1 algorithm is that the MEC
server keeps a record of the average reward that it obtains, via
selecting each action, as well as a confidence interval based on
the total number of times the action was selected. Then, instead
of choosing the action with the best average reward, it chooses
the action with the best upper bound of the interval, meaning
that it chooses the action with the best potential. Specifically,
the MEC server chooses the action that maximizes the following
score:

scoream
= x̄am

+

√
2 ln(nam

)

t
(16)

where am is the action, x̄am
is the average reward experienced

by the MEC server for the action am,nam
is the number of times

that the action am has been chosen and t is the total number of
iterations of the algorithm. Similarly as before, the complexity of
our proposed approach is O(|N | ∗ |S| ∗ ite2 ∗A), where ite2 is
the number of iterations of just the users’ game (see Section III-
B). It should be finally clarified, that in general the multiagent RL
is a very complex case and therefore, in our work we considered
a heuristic approach where each agent separately tries to solve its
own multiarmed bandit problem independently from the others.
The choices of the rest of the agents are implicitly hidden within
the randomness of the perceived reward.

V. PERFORMANCE EVALUATION

In this section, the performance evaluation of the proposed op-
timization and decision-making framework is realized via mod-
eling and simulation. Initially, we demonstrate the performance
of the proposed framework, considering the semiautonomous
GT model to determine the MEC servers’ optimal prices (Sec-
tion V-A). Subsequently, in Section V-B, the evaluation is ex-
tended to demonstrate the operation and tradeoffs of the adoption
of a fully autonomous decision-making approach in determining
the MEC servers’ prices. The impact of the users’ behavioral
characteristics on the offloading strategies and the system perfor-
mance is studied in Section V-C. Finally, Section V-D presents
a comparative evaluation of the proposed framework against
baseline alternatives to demonstrate its operational superiority
and efficiency.

The default system and users’ parameters utilized in the
following performance evaluation, unless otherwise explicitly
stated, are as follows. The total number of users and servers in
the examined multiaccess edge computing environment is set
to |N | = 50 and |S| = 4, respectively. The users’ amount of
input bits bn, the computation demand of the users’ applications
in, the computation capability of the users’ devices fn, and the
users’ local consumed energy per CPU cycle follow uniform
distributions with mean 107 bits, 8 ∗ 109 CPU cycles, 6 ∗ 109
CPU cycles/s, and 4 ∗ 10−9 Joule/CPU cycles, respectively. Fur-
thermore, for demonstration only purposes, the MEC servers’
operational cost is κ = [1, 3, 5, 3] ∗ 10−3 $/bit, while the users’
behavioral characteristics are captured by the risk-aware param-
eter an = 0.2, the loss aversion parameter kn = 1.2, and the
distortion parameter γ = 0.6.

A. Pure Operation Performance Evaluation Under the
Semiautonomous Game-Theoretic Decision-Making Model

In this section, we present the pure operation and performance
of the proposed framework, considering the semiautonomous
GT decision-making of the MEC servers’ optimal prices. Ini-
tially, we present the evolution of several system parameters of
interest as a function of the required iterations for convergence to
a stable solution, including both the decision-making parameters
under consideration here, namely, the average user offloaded
data and the MEC server prices. In particular, Fig. 2(a)–(f)
present each user’s amount of offloaded data, the total amount
of offloaded data per server, the total number of users associated
with each server, the servers’ probability of failure, the optimal
announced prices, and the servers’ reward (9), respectively, as
a function of the Stackelberg game’s iterations. First, we note
that the results clearly demonstrate that the overall proposed
behavior and price-aware edge computing framework converges
quite fast to the Stackelberg equilibrium, i.e., users’ optimal
data offloading strategies [Fig. 2(a)] and MEC servers’ optimal
prices [Fig. 2(e)], as for practical purposes less than 40 iterations
are needed (corresponding approximately to less than 5 s in
simulation time). It is observed that the MEC servers with lower
operational cost (κ1<κ2 = κ4<κ3), announce a lower price
[Fig. 2(e)], thus attracting a larger number of users [Fig. 2(c)]
which in turn offload an overall larger amount of data [Fig. 2(b)].
However, this strategic decision by some of the MEC servers
results in a higher probability of failure [Fig. 2(d)], showing
that these servers struggle to process the users’ offloaded data.
Those servers which are characterized by low operational cost
and announce a low price to attract a large portion of the users’
computing demand, result in experiencing low reward [Fig. 2(f)].
On the other hand, the servers, with intermediate operational
cost announce a conservative price, enjoying a greater reward,
even if they process a comparatively intermediate amount of data
[Fig. 2(b)].

B. Fully Autonomous Decision-Making Reinforcement
Learning Model

In this section, we extend our previous analysis and evaluation
considering that the MEC servers decide their optimal prices
without the need of explicitly receiving any external information.
Instead they perform exploration and exploitation based on the
RL model presented in Section IV-B, toward determining the
optimal prices. Based on the insight we gained from the results
obtained in Section V-B, for implementation and demonstra-
tion purposes, we bound the MEC servers’ strategy space as
Ps = [10−3, 3 ∗ 10−3] and we equally quantize it in 15 possible
actions. Please note that in the following for better understanding
and comprehending the operation and achieved system perfor-
mance by the proposed RL model, the results are discussed,
wherever possible, in comparison with the corresponding ones
achieved by the semiautonomous GT model.

Specifically, in Fig. 3(a) we present the MEC servers’ opti-
mal announced prices for the overall execution period of the
RL algorithm as a function of the corresponding iterations,
while in Fig. 3(c) the corresponding MEC servers’ reward is
also presented. To gain some more insight about the algo-
rithm operation and convergence, in Fig. 3(b) the evolution
of the the MEC servers’ optimal prices during the last 1000
iterations is highlighted. The results demonstrate that initially
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Fig. 2. Pure operation performance under the semiautonomous game-theoretic decision-making approach. (a) Data offloaded by each user to each server. (b)
Total amount of offloaded data per server. (c) Number of users associated with each server. (d) Probability of failure of each server. (e) Optimal announced price
by each server. (f) Reward experienced by each server.

Fig. 3. MEC servers prices and rewards based on a fully autonomous reinforcement learning model.

the MEC servers explore several prices to be announced to
the users [Fig. 3(a)], as shown by the high price variations
in consecutive iterations, but as the RL algorithm thoroughly
explores the potential pricing strategies, it finally concludes and
converges toward an optimal announced price with very limited
exploration [Fig. 3(b)].

Also, it is observed that the fully autonomous decision-
making model follows the same trend regarding the MEC
servers’ announced prices, i.e., p1<p2 = p4<p3 [Fig. 3(b)],
as the semiautonomous GT model [Fig. 2(e)]. However, the
servers with lower operational cost learn better the character-
istics of the edge computing environment, and better account
for the total amount of processed data [Fig. 2(b)], thus, they
announce a higher price (i.e., p1) in the fully autonomous RL
decision-making model [Fig. 3(b) versus the corresponding
prices obtained in the semiautonomous GT model Fig. 2(e)].
Thus, the MEC servers with lower operational cost eventually
achieve to enjoy a higher reward [Fig. 3(c)] in contrast to the
results obtained by the semiautonomous GT decision-making
model.

The above obtained results conclude to the following fun-
damental and interesting observations regarding the fully au-
tonomous RL and the semiautonomous GT decision-making
models. Both of them result in similar benefits regarding the
users’ computing requests’ satisfaction, their corresponding
achieved utility, and their optimal data offloading strategies.
On the other hand, the RL-based model supports better the
free market competition among the MEC servers, which au-
tonomously learn and decide the optimal announced prices,

without the need for the involvement of a (centralized) market
regulatory entity. In this case, the MEC servers operate in a
myopic and selfish manner resulting in higher achieved rewards,
even for the servers that announce lower prices. On the other
hand, the GT-based decision-making model concludes faster
to the users’ optimal data offloading strategies and the MEC
servers’ optimal announced prices, compared to the RL-based
model.

C. Impact of Users’ Behavioral Characteristics

In this section, we study the impact of the users’ behavioral
characteristics, as they are captured by the risk-aware parameter
αn and the loss aversion parameter kn, on the overall system’s
operation. Concerning the different values of the risk-aware
parameter αn, Fig. 4 shows that the higher the value of αn

is, the higher is the amount of data that the user offloads. By
increasing αn, the sensitivity on gains as well as on losses
increases exponentially based on (6). Also, given that the
amount of offloaded data increases, the probability of failure
increases as well. However, still the MEC servers are more
likely to succeed in fulfilling their tasks, thus, making the first
branch of (6) more likely to occur. As a result, increasing the
exponent αn results in higher expected utility for the users
based on (8). In turn, due to the users’ higher willingness
to offload data, the servers have the flexibility to announce
higher prices, which in combination with the larger volume of
the offloaded data, lead to higher rewards for the servers.
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Fig. 4. Offloading strategies and system performance versus risk-aware pa-
rameter αn.

Fig. 5. Offloading strategies and system performance versus loss aversion
parameter kn.

Fig. 6. System performance versus offloaded data.

On the other hand, increasing the loss aversion parameter
kn, which expresses how the users weigh the losses, has the
opposite effect. As kn increases, Fig. 5 shows that the users tend
to offload less data in order to reduce their potential losses. It
is noted that the gains experienced by the users are not affected
by the parameter kn as we can see from (6). Also, we observe
that the users’ expected utility decreases by a smaller amount as
compared to the corresponding changes in the risk-aware param-
eter αn, due to the linear dependence of the utility function on
the parameter kn. Also, the MEC servers’ probability of failure
maintain relatively low values, signifying that losses eventually
play a less important role in the resulting expected utility. Due
to the decreasing amount of offloaded data, the servers aim at
incentivizing the users to offload more data by announcing lower
prices to the users, leading to an overall decreased reward for
the servers.

Moreover, in the following Fig. 6, we present the tradeoffs
between different system performance metrics while forcing
the users to offload specific portions of their data. Specifically,
by keeping all the users’ data locally for processing, the users

experience zero utility, since the local processing depicts the
reference point of the prospect-theoretic utility function (6).
Consequently, since no data are offloaded, the MEC servers
announced price and their probability of failure remain zero. In
the scenario that very few data are offloaded, the servers impose
low prices since they want to incentivize users to offload more
data, resulting in low rewards. On the other hand, the users still
experience high utility, given the fact that the server is guaranteed
to succeed in executing their tasks due to the low probability
of failure. However, when the percentage of offloaded data
exceeds a threshold (e.g., 20% of the users’ data in our case),
the users tend to experience lower utility. This phenomenon is
observed due to the fact that even if the users offload more
data and enjoy the servers’ computing capabilities, the servers
ultimately increase their prices to compensate for their offered
computing resources. The above threshold depends on the users’
behavioral characteristics, as well as on the servers’ computing
capabilities and market competition. Additionally, due to the
increased exploitation of the MEC servers’ computing resources,
the probability of failure increases, leading to further decrease
in the users’ expected utility.

D. Comparative Evaluation

Subsequently, we present a detailed comparative evaluation of
the proposed framework—under the two operational alternatives
and models—against four different benchmarking scenarios,
with respect to determining the optimal MEC server’s prices.
In particular, we compare the proposed fully autonomous RL
model and the semiautonomous GT one, against the following
strategies: 1) RL-AVG, where the MEC servers constantly an-
nounce the average prices that the RL model has learned over
30 000 iterations, 2) MAX, 3) MIN, and 4) RANDOM, where
the MEC servers always announce a maximum, minimum, and
random price to the users, respectively.

Fig. 7(a) and (b) demonstrate the cumulative MEC servers’ re-
wards (9) over the iterations of the RL model, over two different
scenarios corresponding to 100 and 30 000 iterations, respec-
tively. The results reveal that the MAX scenario, as expected,
constantly presents the worst rewards for the MEC servers, as
their computing services become extremely expensive for the
users, and the latter ones prefer to locally process their data
on their devices. On the other hand, the RL-AVG scenario
constantly achieves the best rewards for the MEC servers, as they
always announce the educated optimal prices that the RL-model
has chosen. The MIN and RANDOM scenarios on the other
hand, present worse results than the GT and the RL models, in
particular after the point that the latter one has performed suffi-
cient exploration [Fig. 7(b)] of the available pricing strategies.
Thus, even if the MEC servers set a low price to attract more
users (MIN scenario), this decision results in worse rewards
compared to the optimal decision-making performed by the GT
and RL scenarios, due to the combined effect of the low price and
the phenomenon of the tragedy of the commons, which results in
the overexploitation of the MEC servers’ computing resources.

Placing our emphasis on the GT and RL scenarios, we ob-
serve that the GT model achieves fast a stable optimal outcome
(Fig. 7), while the RL model progressively explores the MEC
servers’ strategy space and eventually results in similar, and even
slightly better rewards for the MEC servers. Moreover, Fig. 7(c)
comes as a verification to the above argument and observation,
since even though initially the RL leads to greater regret for
the servers compared to the GT approach, after approximately
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Fig. 7. Cumulative reward of servers: Comparative evaluation.

Fig. 8. System Performance for various pricing mechanisms.

12 000 iterations this trends reverses and the RL approach leads
to lower and diminishing regret, thus becoming more favorable
in the long run. Please recall that the regret as it has been
defined in Section IV-B, represents the difference between the
cumulative profit that the servers would have obtained if they
had been playing the best pricing strategy from the beginning
(which in practice is unknown and is only theoretical)—here is
the RL-AVG strategy—and the cumulative profit that the servers
actually receive until iteration i under the corresponding strat-
egy. The latter observation is well aligned with the findings in
Section V-B, where it was concluded that the RL model benefits
more the MEC servers, presenting superior rewards compared
to the GT model, while guaranteeing similar performance for
the users.

Finally, in Fig. 8 we present a comprehensive evaluation of
various system performance metrics for all the different consid-
ered alternative strategies, in order to better validate the relative
efficiency and effectiveness of our proposed approaches, in a
more holistic manner. Specifically, we observe that both GT
and the RL approaches outperform all the alternative baseline
methods in balancing the rewards for both users and servers. For
instance, selecting the RANDOM approach may result in lower
probability of failure for the servers as less data are offloaded
to them, however, relatively poor performance is observed with
respect to the rest of the metrics, noting that both users’ utility
and offloading data (Fig. 8) and servers’ profit (Fig. 7) remain
low. On the other hand, by setting a constant pricing equal to
the minimum one (i.e., MIN), users offload more data to the
servers thus achieving greater utility; however, this happens
at the cost of reduced reward for the servers (Fig. 7). On the
opposite side, setting a constant pricing equal to the maximum
price (i.e., MAX) forces users to keep all their data for local
execution, thus resulting in almost zero probability of failure,
but extremely low reward for the users.

Turning our attention to the GT approach, from the results in
Fig. 8 we notice that it presents a final solution more beneficial
for the users, since the corresponding game converges to a stable
outcome with lower average price than its counterpart of the
RL approach. This in turn allows the offloading of a greater

amount of data to the servers, and consequently results in higher
perceived expected utility by the users. On the other hand,
the RL approach presents a behavior that favours the servers
perspective. That is, though the higher concluding price leads to
lower offloaded data and expected utility, it still allows for higher
profit for the servers [Fig. 7(c)]. It should also be noted that the
RL approach, as expected, closely follows the performance of
the constant price of the average RL pricing, which strengthens
our case and arguments regarding obtaining low regret values
for the respective servers’ choices.

VI. CONCLUSION

In this article, we proposed a behavior and price-aware
multiuser–multiserver–multiaccess edge computing operation
framework, conceptualized and realized based on the principles
of prospect theory, game theory, and RL. The users’ behavior
on the one hand, and the potential servers’ computing resource
usage and overexploitation on the other hand, are captured via
appropriately designed prospect-theoretic utility functions and
the theory of the tragedy of the commons, respectively. The
interactions among the users and the MEC servers are captured
via a Stackelberg game. A noncooperative game among the
users is introduced to determine their optimal data offloading
strategies to the MEC servers, while a GT and an RL model
are proposed, in order to enable the MEC servers to determine
their optimal announced prices in a semi and fully autonomous
manner, respectively. The performance evaluation of the pro-
posed framework is obtained via modeling and simulation, while
its superiority against other basic benchmarking alternatives is
demonstrated.

Part of our current and future work targets at extending the
proposed framework via considering the edge computing market
dynamics following a more holistic labor economics-based ap-
proach. A dynamic and personalized pricing mechanism where
the actual price depends on the capabilities of the user in order
to favor less powerful devices, may promote fair usage of the
network resources and provide greater control over the proposed
framework. It is also noted that in the current work we focused
on the introduction of a communication agnostic data offloading
framework, in order to better evaluate the impact of the users
behavioral characteristics and the MEC servers pricing policies
on the resulting strategies. However the incorporation of com-
munication considerations (e.g., interference and/or achievable
transmission rate) in the overall proposed framework is of high
practical importance.

APPENDIX A
PROOF OF THEOREM 1

Toward proving that the game G has at least one NE, we can
show that the game G is submodular by proving the properties
in Definition 2 [36]. Since the strategy space of the game Bn =
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[0, bn] is closed and bounded, Bn∀n ∈ N is a compact subset of
the Euclidean space. Additionally, the prospect-theoretic utility
function in (8) is by definition smooth since we can calculate its
derivatives of any order in Bn.

By using (2)–(6), we can rewrite (8) as

E
(
Pn,s

(
bMEC
s

))
=

(
bMEC
n,s

)αn

{
R(Ds)(1− π(Prs))

− kn

(
1

tnen
+ ps

in
bn

)αn

π(Prs)

}
(17)

where we substitute R(Ds) =
[
R(Ds)− 1

tnen
− ps

in
bn

]αn

for

notation purposes. TheR(Ds) corresponds to the users’ specific
rate of return which in our work should be by definition positive
so that the users have incentive to offload their data to the MEC
servers.

Toward determining the minimum value of R(Ds), we ob-
serve based on (4) that the function R(Ds) is decreasing with
respect to Ds, and thus, its minimum value corresponds to
Ds = 1. In order to guarantee that the users have the incentive
to offload their data to the MEC server he have the following:

R(Ds = 1) > 0 ⇒ ps <
bn
in

(
1− 1

tnen

)
(18)

providing a boundary on the price that the servers can
impose before the users choose a priori to locally process

all their data. Also, we have: ∂Ds

∂bMEC
n,s

> 0, ∂Ds

∂bMEC
j,s

> 0, ∂R(Ds)
∂bMEC

n,s
<

0, ∂R(Ds)
∂bMEC

j,s
< 0, ∂2R(Ds)

∂bMEC
j.s ∂bMEC

n.s
< 0, ∂Prs(Ds)

∂bMEC
n,s

> 0, ∂Prs(Ds)
∂bMEC

j,s
>

0, ∂
2Prs(Ds)

∂bMEC
n,s ∂b

MEC
j,s

= 0, ∂π(Prs)
∂bMEC

n,s
> 0, ∂π(Prs)

∂bMEC
j,s

> 0, ∂2π(Prs)
∂bMEC

n,s∂b
MEC
j,s

= 0,

when γ ∈ (0, 1). Additionally, and for notation purposes,
we set A = kn(

1
tnen

+ ps
in
bn
)αn > 0, and thus, (17)

becomes: E(Pn(b
MEC
s )) = (bMEC

n,s )αn{R(Ds)(1− π(Prs))−
Aπ(Prs)}. Then, we proceed in calculating the second-order
partial derivative of the user’s expected prospect-theoretic
utility function

∂2E
(
Pn

(
bMEC
s

))
∂bMEC

j,s ∂bMEC
n,s

=αn

(
bMEC
n,s

)αn−1

{
∂R (Ds)

∂bMEC
j,s

[1− π(Prs)]

− R(Ds)
∂π(Prs)

∂bMEC
j,s

−A
∂π(Prs)

∂bMEC
j,s

}

+
(
bMEC
n,s

)αn

{
∂2R(Ds)

∂bMEC
j,s ∂bMEC

n,s

[1−π(Prs)]

− ∂R(Ds)

∂bMEC
n,s

∂π(Prs)

∂bMEC
j,s

− ∂R(Ds)

∂bMEC
j,s

∂π(Prs)

∂bMEC
n,s

}
(19)

= (bMEC
n,s )αn−1

{
αn

∂R(Ds)

∂bMEC
j,s

[1− π(Prs)]

− αnR(Ds)
∂π(Prs)

∂bMEC
j,s

−Aαn
∂π(Prs)

∂bMEC
j,s

+ bMEC
n,s

∂2R(Ds)

∂bMEC
j,s ∂bMEC

n,s

[1− π(Prs)]

−bMEC
n,s

∂R(Ds)

∂bMEC
n,s

∂π(Prs)

∂bMEC
j,s

− bMEC
n,s

∂R(Ds)

∂bMEC
j,s

∂π(Prs)

∂bMEC
n,s

}

and by setting ψ(Ds) =
∂R(Ds)
∂bMEC

j,s

[
αn − αnπ(Prs)

− bMEC
n,s

∂π(Prs)
∂bMEC

n,s

]
− bMEC

n,s
∂R(Ds)
∂bMEC

n,s

∂π(Prs)
∂bMEC

j,s
, we can rewrite (19),

as follows:

∂2E(Pn(b
MEC
s ))

∂bMEC
j,s ∂bMEC

n,s

= (bMEC
n,s )αn−1

{
ψ(Ds)

− αnR(Ds)
∂π(Prs)

∂bMEC
j,s

−Aαn
∂π(Prs)

∂bMEC
j,s

+ bMEC
n,s

∂2R(Ds)

∂bMEC
j,s ∂bMEC

n,s

[1− π(Prs)]

}
.

(20)
The compact form of (20) allows us to extract meaningful

information regarding the sign of the resulting equation. Since
the last three terms are negative based on the aforementioned
derivatives, in order to study the equation we can focus on the
first term, ψ(Ds). Specifically, we can examine the two cases
whereDs = 0 andDs ≈ 1 to study the properties of the function
ψ(Ds).

For Ds = 0, we have

ψ(0) =
∂R(0)

∂bMEC
j,s

αn < 0 (21)

while for Ds ≈ 1, we have

ψ(Ds ≈ 1)

= −bMEC
n,s

[
∂R(1)

∂bMEC
j,s

∂π(Prs(1))

∂bMEC
n,s

+
∂R(1)

∂bMEC
n,s

∂π(Prs(1))

∂bMEC
j,s

]
> 0.

(22)

Following the Bolzano theorem [37], since ψ(Ds) is a con-
tinuous function onDs, there exists at least one value x ∈ (0, 1)
such that ψ(x) = 0. We have already shown that ψ(0) < 0, and
thus, if x is the smallest value in (0, 1), where ψ(x) = 0, that
means that ψ(Ds) < 0∀Ds ∈ (0, x).

Continuing on (20), we have proven that

∂2E(Pn(b
MEC
n ))

∂bMEC
j,s ∂bMEC

n,s

< 0, ∀Ds ∈ (0, x), x ∈ (0, 1). (23)

Based on the above, we can conclude that the noncoop-
erative game G is submodular ∀Ds ∈ (0, x) given that ps <
bn
dn

(
1− 1

tnen

)
and γ ∈ (0, 1), and thus, that the game G has at

least one Pure NE point.
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