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ABSTRACT The edge computing paradigm has become extremely popular over the past years, as a
means of offloading computationally intensive tasks by users of resource and battery-constrained devices.
Nevertheless, the edge networks’ overexploitation by the ever-increasing number of task-offloading users,
gradually leads to their performance degradation. In this paper, we leverage on the different levels of
available computing capabilities across the network, and we design an incentive mechanism that aims
to shift the selfish users’ preference from the edge to the upper fog computing layer, accounting for
their level of delay tolerance. To deal with the users’ heterogeneity in terms of their applications’ multi-
dimensional distinctive features (including their delay tolerance/sensitivity), a multi-dimensional contract
theory modeling is adopted, according to which the edge server determines the bundles of the users’
provided efforts and corresponding offered rewards. In this respect, each user’s effort represents the
amount of its initially offloaded task at the edge that is allowed to be further forwarded and processed
at the fog. Considering that the users-to-edge server offloading is performed under Non-Orthogonal
Multiple Access (NOMA), the problem of joint computation task offloading and uplink transmission
power allocation is subsequently addressed via a Stackelberg game, where the edge server and the users
are treated as leader and followers, respectively. The aim of the game is to minimize the end-to-end
network’s energy consumption and increase its resource utilization efficiency. The incentive mechanism
and resource allocation framework is evaluated via modeling and simulation regarding its operation and
efficiency under different scenarios.

INDEX TERMS Computation offloading, edge-fog networks, game theory, incentive mechanism, multi-
dimensional contract theory.

I. INTRODUCTION

THE UBIQUITOUS connectivity enabled by the
next-generation wireless networks is progressively shap-

ing the frontier of an ambient intelligence era. Striving
to reap the benefits brought by the surrounding envi-
ronment intelligence has provoked the increase of ever
computationally intensive user applications. To facilitate

the computationally and battery-constrained user devices to
meet the corresponding time and energy Quality-of-Service
(QoS) requirements, the concept of computation offloading
of resource-intensive tasks has become extremely popu-
lar. Especially, among the different computing capabilities
and options existing within the computing continuum, the
Multi-Access Edge Computing (MEC), often implemented
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within the Radio Access Network (RAN), has revolutionized
the successful completion of low-latency applications [1].
Nevertheless, driven by their appealing properties, the over-
exploitation of the edge computing networks will gradually
lead to their performance degradation. To alleviate this issue
and ameliorate the overall system’s resource utilization,
a heterogeneous multi-layer computing architecture should
be pursued, where different computing entities of various
capabilities across the network cooperate with each other.
Indeed, the diversity of the offloaded tasks in terms of their

intensity, as well as the heterogeneity of the corresponding
user applications’ performance requirements regarding their
delay (in)sensitivity and power consumption, create a solid
ground for the proper utilization of the different comput-
ing options across the network. Under this scope, the fog
computing, situated anywhere between the network edge
and the cloud, appears as the ideal candidate for Internet
of Things (IoT) user applications of high processing and
storage needs, but of looser completion time and delay con-
straints [2]. Nevertheless, despite the potential ability of the
delay-tolerant tasks to be processed at the fog (or even the
cloud) without degrading the QoS, the edge computing’s
appealing features regarding its proximity to the users along
with the users’ selfish behavior, may prove to be an imped-
iment in the realization of the envisioned heterogeneous
multi-layer computing paradigm [3].
In this paper, we target to exactly address this challenge

under a two-layer computing environment, consisting of an
edge service layer and a fog service layer that are distin-
guished from an architectural point of view with respect
to the location where their computation power is placed.
In particular, in the edge computing model the computa-
tional power and intelligence is implemented exactly at the
network edge (e.g., local edge), while in the fog computing
case this functionality may be offered at different locations
between the network edge and the core network connecting
to the cloud, thus, exploiting the power of the whole digi-
tal continuum (e.g., main edge servers). Within this setting,
different users of heterogeneous application performance
requirements, wirelessly offload part of their applications’
tasks for remote execution at the edge, which in principle
from the user perspective prevails against the fog, being
just one-hop communication distance away. However, in
this paper, leveraging on the extended fog computing capa-
bilities and the wireless communication between the edge
and fog servers, we, first, design and propose an incentive
mechanism, following the principles of labor economics and
multi-dimensional contract theory [4] so that the users exploit
the fog computing. Employing the incentive mechanism, the
edge server seeks to motivate its offloading users to allow
part of their offloaded tasks to be further forwarded and
processed at the fog, based on their distinct and heteroge-
neous applications’ characteristics, as a means of improving
the resource utilization efficiency across the network, and
increasing its overall service capacity, especially under the
presence of delay-tolerant services.

Accordingly, we utilize the outcome of the economic
interplay between the users-edge-fog layers to tackle the
challenging problem of a multi-layer computing environ-
ment’s resource orchestration. Given the percentage of the
initially offloaded tasks at the edge that are allowed to be
further forwarded to the fog, the joint computation task
offloading and uplink transmission power allocation problem
between the users and the edge is addressed, considering the
users’ transmissions’ multiplexing via the Non-Orthogonal
Multiple Access (NOMA) technique. Respecting the need
for decentralized resource management approaches, we pro-
pose a Stackelberg game-theoretic procedure, according to
which the edge server (i.e., the leader) derives the optimal
amount of task to be actually offloaded at the edge by each
user, while at the same time, the users (i.e., the followers)
autonomously determine their optimal uplink transmission
powers to the edge. The game is played iteratively until
convergence, with the overall aim to minimize the end-
to-end system’s energy overhead, subject to the users’
delay-tolerance constraints.

A. RELATED WORK
Several works exist in the literature, dealing with compu-
tation task offloading and resource allocation problems in
multi-layer computing environments, e.g., [5]–[9]. In [5],
the users’ full offload of their computation tasks at a pri-
mary fog server is assumed and the problem of invoking
the assistance of other fog servers or of the cloud is stud-
ied to complete the users’ tasks within their time constraint.
In [6], the multi-user decision problem of their computa-
tion tasks’ execution either locally, or at the fog or at the
cloud is formulated and solved as a potential game, while
other works consider similar offloading decision problems
at multiple computing layers along with computing resource
allocation [7], joint computing resource, uplink transmission
power and radio resource allocation [8], or servers’ service
caching decision [9] problems. On the one hand, none of
the existing works accounts for the three-level splitting (i.e.,
local, edge and fog layers) of the users’ computation tasks,
while overlooking the economic and market perspective of
the computation offloading as a service.
In this paper, though the users are provided with a

transparent computing service - meaning that the multiple
service layers are viewed as a contiguous computing network
- they can still smartly evaluate the emerging tradeoffs
between delay tolerance and task intensity and size, which
are directly affected by the available computing options.
Shifting the selfish users’ preference to upper computing
layers according to their delay-tolerance levels, calls for
the creation and provisioning of appropriate incentives. In
this context, a well-established method to deal with the
problem of incentives comes from the field of labor eco-
nomics and contract theory [4]. Under its general form, a
contract-theoretic model includes an employer that creates
contract bundles tailored to the different employees’ per-
sonal characteristics in order to motivate them provide back
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their efforts. The contracts are designed under “incomplete-
ness of information”, meaning that the employees’ personal
characteristics are initially unknown to the employer, con-
stituting in this way the employees’ “private information”
or “user types”. Among the wide variety of applications of
contract theory in wireless communications and networking
(e.g., cognitive radio networks [10], Device-to-Device (D2D)
communications [11], crowdsourcing [12], resource allo-
cation [13]), some effort has been made in the direction
of computation offloading. In [14], the problem of incen-
tivization of potential temporary edge nodes from an edge
computing operator is examined under a MEC paradigm.
Similar problems are considered in [15], [16] under the
concept of vehicular edge/fog computing offered by vehi-
cles to other travelling vehicles or roadside users. Different
from the concept of computation offloading, but relevant
to the incentivization of delay-tolerant users is the work
in [17]. This work suggests that the users capitalize on their
delay tolerance and cost sensitivity, and forward their traffic
through the available Delay-Tolerant Networks (DTNs) or
WiFi networks, in return for reduced service cost.
Focusing on the practical application of contract theory

models, most of the existing works in the literature, includ-
ing the aforementioned ones in [10]–[12], [14]–[17], rely
on one-dimensional user types that typically capture each
user’s level of willingness or ability to participate in the con-
tract. Nevertheless, such an approach appears to be rather
restrictive, since in most cases there are more than one
distinguishing features for each user that should steer the
contract modeling, especially when these features are con-
flicting. Recently, the problem of multi-dimensional contract
theory in terms of the number of user types that characterize
each user has been investigated in [18]–[20]. In particular,
in [18], the interplay between an advertiser and the users
is modeled under a contact, in which different user types
are devised to account for the users’ enjoyment, disutil-
ity, and ad sensitivity, respectively. In [19], the contractual
agreement between a federated learning model owner and
different Unmanned Aerial Vehicles (UAVs) that offer their
computation capabilities is examined, in which each UAV
is jointly distinguished based on its sensing, computation,
and transmission costs. Last, in [20] the problem of optimal
wireless data plans offered by a Mobile Network Operator
(MNO) to its subscribing users is studied, by incorporating
the users’ satisfaction and network substitutability as two
distinct user types in the model.
With reference to the computation offloading under single-

layer computing environments, a wide variety of works
exist in the literature. Indicative ones in [21], [22], treat
unilaterally the problem of computation offloading from dif-
ferent perspectives, accounting for multi-server setups [21]
or devising usage-based pricing policies [22]. Other attempts,
e.g., [23]–[25], focus on the challenging joint communication
and computing resource allocation under NOMA-enabled
computing systems, by mainly proposing game-theoretic
approaches to obtain a solution in tractable manner and

within polynomial time [26]. In [23], the authors aim to min-
imize the users’ sum delay by optimizing their offloading
strategies and uplink transmission powers to the edge server.
Optimizing a similar set of variables, the minimization of
the total energy is pursued in [24], while the concurrent
minimization of the users’ energy consumption and latency
is achieved in [25], via a Stackelberg game. However, all
aforementioned works in [21]–[25], consider this single layer
as a practically infinite energy and resource computing layer
compared to the users’ constrained devices, whereas our
approach removes this limitation, by taking the edge service
layer’s energy efficiency into account.

B. CONTRIBUTIONS AND OUTLINE
It becomes apparent that although several efforts have been
devoted to the joint communication and computing resource
allocation that pertain to different multi-layer computing
settings, the overwhelming majority of them is founded
on the effective and efficient execution of delay-sensitive
tasks. In our paper, in contrast to the rest of the research
works, we aim to, first, study the problem of collaborative
edge-fog computing from a market perspective and leverage
on the economic interplay between the involved parties to
tackle the challenging two-layer computing environment’s
resource orchestration. Under this objective, our goal is to
better utilize the available computing resources in such a
heterogeneous and multi-layer computing setting, increasing
in this way its computing service capacity, while minimiz-
ing the end-to-end energy overhead. Specifically, the key
contributions of this paper are summarized as follows.
1) A system model of a two-layer edge-fog computing

environment is introduced, accounting for both the
computing models of the users, the edge and fog
servers, and the wireless users-to-edge and edge-to-fog
communication models (Section II).

2) An incentive mechanism is designed between the
edge server and the users following the principles
of multi-dimensional contract theory. Based on the
heterogeneity of the users’ applications and hence,
their multi-dimensional private information, the edge
server derives a set of contract bundles, comprising
the required efforts from the users and their offered
rewards. Each user’s effort represents the percentage
of the initially offloaded task at the edge server that
can be further transmitted and processed at the fog
(Section III).

3) A joint communication and computing resource allo-
cation problem is designed between the edge server
and the users in the form of a Stackelberg game.
The edge server, i.e., the leader, determines the users’
optimal amounts of tasks to be offloaded at the edge,
being aware of the percentage of each user’s task that
will be processed at the fog. Subsequently, the users,
i.e., the followers, being multiplexed via power-domain
NOMA, derive their optimal uplink transmission pow-
ers to the edge. The edge server seeks to maximize
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FIGURE 1. High-level overview of the two-layer computing environment’s
architecture.

its perceived satisfaction minus the end-to-end energy
overhead from the users to the fog, while the users
pursue their personal energy efficiency maximization
under a non-cooperative game. The overall resource
allocation procedure is iteratively executed until the
Stackelberg equilibrium is reached (Section IV).

4) Based on the above theoretical foundations, we study
the inherent operational characteristics of both the
incentive mechanism and the resource allocation proce-
dure, via modeling and simulation. Moreover, we prove
the performance efficiency of the proposed incomplete
information contract by comparison with the bench-
mark complete information case, while demonstrating,
at the same time, the superiority of the proposed
resource allocation approach, against different baseline
offloading strategies (Section V).

II. SYSTEM MODEL
A two-layer computing environment is considered, consist-
ing of a set of users N = {1, . . . ,N}, an edge server, and a
fog server. We assume that the edge server can be mobile,
with consequently some limitation on its available energy,
and hence, can move in close proximity to the users. On
the other hand, the fog server lies between the edge and the
cloud/core network, serving - among others - the purpose
of computation alleviation/relaxation of the edge. It should
be noted that the problem of the edge server placement,
though interesting and challenging, is considered beyond
the scope of the paper, while the extension to the multi-
edge server case is part of our future work. The focus of
this paper is primarily placed on the interplay between the
various computing layers (users-edge-fog) and their joint and
collaborative exploitation. A high-level overview of the gen-
eral users-edge-fog computing architecture, aligned with the
system model considered in this paper, is presented in Fig. 1.

Fig. 1 highlights the architectural differentiation between the
edge and fog computing layers, with respect to the location
where their intelligence and computation power is placed
within the overall network [27]–[30].
In this system, each user n has a computing application

An, which can range from a typical smart city, trans-
portation, healthcare, industry and agriculture computing
application (e.g., [1], [31]), as illustrated in Fig. 1. Each
user’s computing application’s An specific characteristics are
defined as An = (Dn, φn,Tn,En), where Dn [Bytes] denotes
the application’s total input bytes, φn [CPU cycles/Byte]
indicates the application’s intensity and Tn [s] is the end-to-
end completion time requirement, which implicitly reveals
the user’s level of delay tolerance. Last, En [J] is the user
device’s energy constraint. Accordingly, the term φnDn [CPU
cycles] denotes the number of CPU cycles required for the
application’s execution, which is referred to as “task” in the
following and can represent a number of images, videos, text,
voice, or maps, depending on the user’s computing applica-
tion’s nature. In this paper, we pursue a realistic scenario,
under which the user application’s characteristics take values
from discrete sets, such that Dn ∈ D, φn ∈ �, Tn ∈ T and
En ∈ E , where D,�, T , E are the corresponding discrete
sets. Also, we assume that a task φnDn can be arbitrarily
partitioned into subsets of any size, which can be executed
at either the user device, edge server, or fog server.
Owing to the edge server’s appealing attributes, including

its proximity to the users, we assume that each user n chooses
to communicate with the edge server and offload part of its
total task φnDn for remote computation. We denote as φndn
[CPU cycles] the part of task that is actually offloaded by
the user at the edge, where dn ∈ [0,Dn] [Bytes] is the user’s
n offloading bytes. Based on the application’s An character-
istics, a percentage xn ∈ [0, 1] of the initially offloaded task
φndn by the user n at the edge, is allowed to be further trans-
mitted and processed at the fog. The value of the percentage
xn is derived from the contractual agreement between the
edge server and the user n, which is analytically presented
later in Section III. As a result, considering a user n, a total
amount of xndn [Bytes] is wirelessly transmitted from the
edge to the fog, and xnφndn [CPU cycles] are computed at
the fog server, while the remaining (1 − xn)φndn are ulti-
mately processed at the edge. Finally, it is noted that Dn−dn
bytes are reserved for local computation at the user’s device.

A. WIRELESS COMMUNICATION MODEL
Focusing on the communication model, we assume that
the two-layer wireless network operates in out-of-band
mode, meaning that the transmissions in the wireless access
and backhaul network parts (e.g., user-to-edge and edge-
to-fog) are performed using different frequency bands.
We denote as We [Hz] the bandwidth of the wireless
access and Wf [Hz] the bandwidth of the wireless back-
haul that facilitates the transmission from the edge to the
fog. The users’ transmissions in the wireless access are
multiplexed using the combination of power-domain NOMA
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and Successful Interference Cancellation (SIC) techniques,
while no interference is sensed by the edge server at the
wireless backhaul network part.
In detail, regarding the wireless access of the users to the

edge server, we denote by Gn the channel gain of a user
n, which is defined as Gn = ρd−ae

n,e , where ρ [dB] is the
path loss at the reference distance of 1m, dn,e [m] is the
Euclidean distance between the user n and the edge server
and ae is the path loss exponent. Without loss of general-
ity, we assume that the users’ channel gains are ordered in
ascending manner, i.e., G1 ≤ · · · ≤ Gn · · · ≤ GN , such that
the decoding starts from the higher channel gain user, when
the SIC technique takes place at the receiver of the edge
server. Hence, following the combination of NOMA and
SIC, the user’s n achieved data rate in the uplink direction
to the edge server is:

Rn = We log2

(
1 + Gnpn∑n−1

n′=1 Gn′pn′ + I0

)
[bps], (1)

where pn ∈ [0, pmaxn ] [W] indicates the user’s n uplink
transmission power that is constrained by a maximum trans-
mission power level pmaxn , and I0 [dBm/Hz] is the power
spectral density of zero-mean Additive White Gaussian Noise
(AWGN). As a result, considering that a user n transmits dn
bytes to the edge server, we can define the transmission time
and energy overheads that experiences as follows:
1) User’s n offloading time overhead:

Toffn = dn
Rn

[s]. (2)

2) User’s n offloading energy overhead:

Eoffn = dnpn
Rn

[J]. (3)

Regarding the wireless backhaul transmission from the
edge to the fog, we define as Ge = ρd

−af
e,f the channel

gain between the edge and fog servers, where de,f [m] is the
Euclidean distance between the two servers and af is the cor-
responding path loss exponent. Denoting as pe [W] the uplink
transmission power of the edge server to the fog, the edge
server’s achieved data rate is expressed as:

Re = Wf log2

(
1 + Gepe

I0

)
[bps]. (4)

Accordingly, we define the transmission time and energy
overheads at the backhaul, experienced by the edge server,
considering a single user n:

1) Edge server’s offloading time overhead for user’s n
task:

Tn,offe = xndn
Re

[s]. (5)

2) Edge server’s offloading energy overhead for user’s n
task:

En,offe = xndnpe
Re

[J]. (6)

B. COMPUTING MODEL
The two-layer edge-fog computing setting under considera-
tion provides, apparently, three levels of different computing
capabilities to its serving users. Analyzing these options from
a bottom-up perspective, we denote as Fn [CPU cycles/s]
the user n device’s inherent (local) computing capability,
and σn [J/CPU cycle] its corresponding power consump-
tion coefficient per CPU cycle. Considering that the user
n executes locally a task of size φn(Dn − dn) CPU cycles,
the user’s n corresponding computation/execution time and
energy overheads are defined as follows [32], [33]:
1) User’s n execution time overhead:

Texecn = φn(Dn − dn)

Fn
[s]. (7)

2) User’s n execution energy overhead:

Eexecn = σnφn(Dn − dn)F
2
n[J]. (8)

Adopting a similar modeling for the subsequent comput-
ing layer, we indicate as Fe [CPU cycles/s] the edge server’s
computing capability, which is assumed to be higher than
each user’s n, but finite and more limited compared to the
fog. Also, let σe [J/CPU cycle] denote its power consump-
tion coefficient per CPU cycle. Considering that the edge
servers’ resources are sufficient and can facilitate the par-
allel computation of the users’ tasks [34], [35], the edge
server’s incurred time and energy consumption overheads
for each user n are:

1) Edge server’s execution time overhead for user’s n
task:

Tn,exece = (1 − xn)φndn
Fe

[s]. (9)

2) Edge server’s execution energy overhead for user’s n
task:

En,exece = σe(1 − xn)φndnF
2
e [J]. (10)

As far as the fog computing layer is concerned, in this
paper, we assume that the processing capabilities of the fog
server significantly excel both the edge server and the user
devices, and hence, without loss of generality and for sim-
plicity in the presentation, we assume that the fog induces
practically zero time and energy costs compared to the other
two lower computing layers. However, this analysis is still
valid and can be easily extended to additionally account for
these overheads at the fog computing layer.

C. OVERALL FRAMEWORK
In this paper, we aim to promote the utilization of the end-to-
end users-edge-fog computing paradigm, under the case that
the users’ tasks are characterized by some form of delay tol-
erance. Considering that the users typically exhibit a selfish
and greedy behavior in relation to their perceived satisfaction
from the remote computation of their tasks, we first employ
an incentive mechanism that targets to shift their preference
from the prevailing edge server to the fog server. To this end,
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a multi-dimensional contract is designed by the edge server,
which based on the edge server’s statistical knowledge of
the potential user applications’ heterogeneous features, con-
cludes to a set of optimal contract bundles w∗ = {x∗, r∗}
intended for the users. The term x∗ indicates the vector of
the users’ required efforts, which are mapped to the per-
centage of each user’s task φndn that is further offloaded at
the fog, while the term r∗ represents the vector of the cor-
responding rewards, which can be considered as a form of
discount to the users’ received computing service from the
edge server. The exact definition of these parameters is pro-
vided later in Section III-A. Based on its private information,
i.e., user application characteristics, each user autonomously
selects the contract bundle w∗

n = {x∗n, r∗n} that best fits is
type, revealing implicitly in this way its private information
to the edge server.
Being aware of the percentage of task x∗n that is allowed

by each user n to be transmitted to the fog, the edge server
is able to calculate the end-to-end system’s total energy
and time overhead from the users to the fog, as presented
in Eq. (2)-(3) and Eq. (5)-(10). Targeting to maximize its
perceived satisfaction minus the end-to-end computing envi-
ronment’s energy overhead, the edge server calculates each
user’s n optimal amount of offloaded task φnd∗

n , having a
prior knowledge of the users’ uplink transmission powers
to the edge. The edge server’s decision if fed back to the
users, who accordingly determine their optimal uplink trans-
mission power levels p∗

n,∀n ∈ N in a distributed manner, by
participating in a non-cooperative game among themselves.
The optimization procedures of both the edge server and the
users are iteratively updated, until convergence of this joint
resource allocation is achieved, resulting in a Stackelberg
game. A high-level overview of the individual steps of
the proposed incentive mechanism and resource allocation
framework is presented in Fig. 2, revealing also the interac-
tions that take place between the edge server and the users
at each step.

III. MULTI-DIMENSIONAL CONTRACT-BASED INCENTIVE
MECHANISM DESIGN
This section is devoted to the introduction and analytic
description of the devised incentive mechanism, based on
multi-dimensional contract theory. First, we define the
multi-dimensional private information and user types that
distinguish the users and reflect their heterogeneity, along
with the designed contract bundles and utilities. Then, we
study the problem of contract formulation and gradually, we
derive the optimal contracts.

A. USER TYPES, CONTRACT BUNDLES & UTILITIES
Following each user application’s An heterogeneous charac-
teristics, the users can be categorized into different user
types that capture their ability and willingness to allow
part of their initially offloaded tasks at the edge server to
be forwarded to the fog. Assuming that the discrete sets
D,�, T comprise K,L,M values, respectively, such that

FIGURE 2. High-level overview of the overall incentive mechanism and resource
allocation framework.

D = {Dk : 1 ≤ k ≤ K}, � = {�l : 1 ≤ l ≤ L} and
T = {Tm : 1 ≤ m ≤ M}, there exist K × L × M combi-
nations of user types in the system, which derive from the
Cartesian product B×� ×� of the sets B, �,� analyzed in
the following. Specifically, we categorize the users into a set
B = {βk : 1 ≤ k ≤ K} of K application size evaluation types,
which are determined by the rule βk = Dk

max1≤k≤K{Dk} , a set
� = {γl : 1 ≤ l ≤ L} of L application intensity evaluation
types that are derived as γl = �l

max1≤l≤L{�l} , as well as a set
� = {δm : 1 ≤ m ≤ M} of M delay sensitivity evaluation
types, such that δm = 1/Tm

max1≤m≤M{1/Tm} . For all user types it
holds that βk, γl, δm ∈ (0, 1],∀k, l,m. Without loss of gener-
ality, we assume that the user types are sorted in ascending
order under all dimensions, i.e., β1 ≤ · · · ≤ βk ≤ · · · ≤ βK ,
γ1 ≤ · · · ≤ γl ≤ · · · ≤ γL, δ1 ≤ · · · ≤ δm ≤ · · · ≤ δM . Also,
each combination of the K×L×M user types is characterized
by a joint probability mass function Pr(βk, γl, δm),∀k, l,m.
At this point, it should be reminded that the user types
constitute the users’ private information that is unknown to
the edge server, whereas the edge server is only aware of
the different user types’ joint probability mass function, and
should appropriately design the contract bundles relying on
this partially complete (or incomplete) information.
As mentioned earlier, the edge server designs a set of

optimal contract bundles w∗ = {x∗, r∗} of the users’ required
efforts and offered rewards, respectively, based on its proba-
bilistic knowledge of the potential users’ types. Specifically,
we denote as xnk,l,m ∈ [0, 1] the effort of user n of type
(βk, γl, δm), and rnk,l,m ∈ R

+ its corresponding reward.
Apparently, different users from the set N can be of the
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same type (βk, γl, δm), acquire the same contract bundle and
hence, experience the same utility. Since our analysis is
focused on the differentiation of the contract bundles with
respect to the different user types, in the following, we drop
the superscript n that points to a specific user for notation
simplicity. In addition, we refer to the user type (βk, γl, δm)

as (k, l,m)-type user, whose corresponding contract bundle
is wk,l,m = {xk,l,m, rk,l,m}.
Given a (k, l,m)-type user’s effort xk,l,m and its offered

reward rk,l,m, we define its perceived satisfaction from its
participation in the contract by the following utility:

Uk,l,m
(
wk,l,m

) = rk,l,m − (1.5 + δm − βkγl)q
(
xk,l,m

)
, (11)

where q(xk,l,m) is an increasing function of xk,l,m, which
together with the term (1.5 + δm − βkγl) implies its evalu-
ation of provided effort. Specifically, the term βkγlq(xk,l,m)

indicates that the user’s benefit from exerting its effort to
the edge server increases as its βk, γl types increase, since
a higher amount of task can be executed at the combination
of edge-fog. On the contrary, the user’s benefit decreases
as its delay sensitivity evaluation δm increases, noted by the
term −δmq(xk,l,m). The physical meaning and interpretation
of the overall utility function is that the (k, l,m)-type user’s
satisfaction derives from its offered reward minus its pro-
vided effort, which, in turn, increases proportionally to its
application’s input bytes and intensity and is inversely pro-
portional to its delay sensitivity. For ease of reference, we
define as Qk,l,m(xk,l,m) = −(1.5 + δm − βkγl)q(xk,l,m), and
we rewrite the (k, l,m)-user type’s utility as Uk,l,m(wk,l,m) =
Qk,l,m(xk,l,m) + rk,l,m. Taking into account that βk, γl, δm ∈
(0, 1] and that q(xk,l,m) is an increasing function, it holds
that ∂Qk,l,m

∂xk,l,m
< 0, and thus, Qk,l,m(xk,l,m) is a decreasing func-

tion on xk,l,m. For demonstration purposes and without loss
of generality, in the following we consider q(xk,l,m) = x2

k,l,m.
Concerning the utility that the edge server attains from

a single (k, l,m)-type user’s participation in the contract,
this is modeled as Vk,l,m(wk,l,m) = h(xk,l,m) − ξrk,l,m, where
h(xk,l,m) is an increasing and concave function on xk,l,m,
accounting for the edge server’s evaluation of received effort,
while ξ ≥ 1 is the edge server’s cost of offered rewards.
Obviously, the edge server’s utility increases as the user’s
effort increases and decreases proportionally to its offered
reward. As a result, the overall edge server’s utility from
the different user types’ participation can be expressed as
follows:

V(W) =
K∑
k=1

L∑
l=1

M∑
m=1

Prk,l,m
(
h(xk,l,m) − ξrk,l,m

)
, (12)

where W = {wk,l,m, 1 ≤ k ≤ K, 1 ≤ l ≤ L, 1 ≤ m ≤ M}
is the set that contains the ensemble of contract bundles.
Motivated by [18], in the following we consider the function
h(xk,l,m) = c

1−λ
x1−λ
k,l,m to capture the sharp increase of the

edge server’s marginal rate of satisfaction with the user’s
effort increase, by intelligently controlling c ∈ [0, 1] and
λ ∈ (0, 1).

B. CONTRACT FORMULATION
Considering the realistic scenario of incompleteness of
information from the edge server’s perspective, then the
designed contract bundles should bear specific properties
in order to promote the users’ participation in the contract.
In particular, the edge server should ensure that each user
experiences a non-negative utility, while its utility is, also,
maximized when selecting the contract bundle designated
for its specific type. These two conditions are summarized
under the notions of Individual Rationality (IR) and Incentive
Compatibility (IC), which are formally defined below.
Definition 1 [Individual Rationality (IR)]: A contract bun-

dle wk,l,m = {xk,l,m, rk,l,m} satisfies the individual rationality
condition if each (k, l,m)-type user for all 1 ≤ k ≤ K, 1 ≤
l ≤ L, 1 ≤ m ≤ M receives a non-negative utility, i.e.,

Uk,l,m
(
wk,l,m

) ≥ 0,∀k, l,m. (13)

Definition 2 [Incentive Compatibility (IC)]: Each (k, l,m)-
type user for all 1 ≤ k ≤ K, 1 ≤ l ≤ L, 1 ≤ m ≤ M
receives the maximum utility, when selecting the contract
bundle wk,l,m = {xk,l,m, rk,l,m that is intended for its own
type, i.e.,

Uk,l,m
(
wk,l,m

) ≥ Uk,l,m
(
wk′,l′,m′

)
,∀k, l,m,

k �= k′, l �= l′,m �= m′. (14)

Hence, the multi-dimensional contract problem to be
solved by the edge server can be formally written as:

max
W

V(W)

s.t. (13), (14). (15)

The resulting optimization problem in Eq. (15) includes
KLM IR and KLM(KLM − 1) IC constraints, which fully
interconnect the contract bundle design between the dif-
ferent user types. In order to derive a tractable solution,
an appropriate procedure should take place to reduce
its constraints, which primarily differs from the standard
method used in the one-dimensional contract problems
(e.g., [10]–[12], [14]–[17]) and is comprehensively presented
in Sections III-C and III-D.

C. CONTRACT FEASIBILITY
In this section, we study the necessary conditions that
must be satisfied in order to render the formulated con-
tract problem feasible. To facilitate this analysis, we first
transform the three-dimensional contract problem to a single-
dimensional one, by introducing a single “virtual” user type
that bears all three-dimensional private information of the
users. To this end, we resort to some useful properties of
the theory of economics.
We consider a (k, l,m)-type user’s indifference curve

in the contract plane {xk,l,m, rk,l,m} between its effort and
reward, which under a fixed utility value U(w) = Ū satisfies:

Ū = rk,l,m − (1.5 + δm − βkγl)q
(
xk,l,m

)
= Qk,l,m

(
xk,l,m

) + rk,l,m, (16)

VOLUME 3, 2022 441



DIAMANTI et al.: INCENTIVE MECHANISM AND RESOURCE ALLOCATION FOR EDGE-FOG NETWORKS

which actually yields all combinations of {xk,l,m, rk,l,m} that
result in the same utility to the users.
The slope s of the indifference curve is calculated by

taking the partial derivatives of both sides in Eq. (16) as:

sk,l,m
(
xk,l,m

) = −∂Qk,l,m
∂xk,l,m

= ∂rk,l,m
∂xk,l,m

= (1.5 + δm − βkγl)q
′(xk,l,m)

, (17)

which is referred to as “marginal rate of substitution”, imply-
ing the rate at which a user is expected to abandon a
{xk,l,m, rk,l,m} combination in exchange for another, while
maintaining the same utility value. Apparently, Eq. (17)
depends on the three-dimensional (k, l,m)-type in a com-
bined manner, and the effort xk,l,m. By scrutinizing the
definition of parameter s, we can easily deduce that the
lower the value of s, then the lower the delay sensitiv-
ity evaluation type δ and the higher the application size
and intensity evaluation types β and γ , respectively. This
concludes in higher user’s willingness to participate in the
contract. On the contrary, the opposite holds true under a
higher value of s, which increases the user’s unwillingness
to participate. Hence, as the value of the marginal rate of
substitution s in Eq. (17) increases, the user’s overall will-
ingness decreases. Therefore, we may additionally refer to
s as “unwillingness-to-participate” parameter.

Without loss of generality, we sort the K × L × M user
types in ascending order with respect to the unwillingness-
to-participate parameter s as follows:

Z1(x), . . . ,Zi(x), . . . ,ZKLM(x), (18)

where Zi(x) � (βi, γi, δi), 1 ≤ i ≤ KLM denotes a user type
under the new formulation, which is actually the virtual user
type we are seeking. Thus, considering an effort x and under
the ordering in Eq. (18), it holds that:

s(Z1, x) ≤ · · · ≤ s(Zi, x) ≤ · · · ≤ s(ZKLM, x). (19)

It is interesting that although the value of s(Zi, x) changes for
different efforts x, the virtual user type ordering in Eq. (18)
remains unchanged, which we elaborate on Lemma 1 below.
Lemma 1: The new user type ordering in Eq. (19) is

independent of the effort x, i.e., Zi(x) = Zi(x′), x �= x′, 1 ≤
i ≤ KLM.
Proof: The proof of this lemma stems intuitively from

the fact that the unwillingness-to-participate parameter
s(β, γ, δ, x) has a separable structure with respect to the
three-dimensional types (β, γ, δ) and the effort x, as can be
easily observed by its definition in Eq. (17).
In the remainder of the paper, we directly use Zi to refer

to the virtual user type, referred to as unwillingness-to-
participate user type. Also, the contract bundle intended for
Zi is denoted as wi = {xi, ri}, while this notation applies
to all other considered variables. Consequently, the utility
function of a user type Zi is written as Ui = Q(Zi, xi) + ri,
where Q(Zi, xi) is the equivalent of Qk,l,m(xk,l,m).

Given the outcome of Lemma 1, we conclude that
whatever the value of x is, the minimum unwillingness-to-
participate user type is Z1 = (βK, γL, δ1), whose application
size and intensity is the highest, while its delay sensitivity
is the lowest. Conversely, the maximum unwillingness-to-
participate user type is ZKLM = (β1, γ1, δM), which, also,
attains the minimum utility based on the definition of utility
in Eq. (11).
Next, we derive the necessary conditions that render a

contract W = {wi, 1 ≤ i ≤ KLM} feasible, meaning that
the IR and IC conditions defined in Eq. (13) and Eq. (14),
respectively, are successfully met.
Lemma 2: For any feasible contract W = {wi, 1 ≤ i ≤

KLM}, it holds true that xi > xj ⇔ ri > rj.
Proof: First, we prove that ri > rj ⇒ xi > xj, by utilizing

the IC condition that holds true for user type Zj, which gives
Q(Zj, xj)+rj ≥ Q(Zj, xi)+ri ⇔ Q(Zj, xj)−Q(Zj, xi) ≥ ri−rj.
Thus, if ri > rj then Q(Zj, xj) > Q(Zj, xi) and considering
that function Q is decreasing with respect to x, we get xi > xj.
In order to prove that xi > xj ⇒ ri > rj, we follow

a similar procedure and we elaborate on the IC condition
that holds for user type Zi as: Q(Zi, xi) + ri ≥ Q(Zi, xj) +
rj ⇔ Q(Zi, xi) − Q(Zi, xj) ≥ rj − ri. Then, if xi > xj

Q↘⇐=⇒
Q(Zi, xi) < Q(Zi, xj) and thus, it can be easily concluded
that ri > rj. This completes the proof.
The rationale behind Lemma 2 is that a user receives a

higher reward, when providing a higher effort to the edge
server, in order to be properly incentivized to participate in
the contract.
Lemma 3 (Monotonicity): For any feasible contract W =

{wi, 1 ≤ i ≤ KLM}, it holds true that s(Zi, x) > s(Zj, x) ⇒
xi ≤ xj, for any x.
Proof: We prove this lemma by contradiction, assuming

that there exist xi and xj, such that xi > xj, which give
s(Zi, x) > s(Zj, x), for any x.

We write the IC conditions that hold for the user types
Zi and Zj, respectively, as Q(Zi, xi) + ri ≥ Q(Zi, xj) + rj
and Q(Zj, xj) + rj ≥ Q(Zj, xi) + ri. By adding these two IC
condition inequalities by parts, we get Q(Zi, xi)+Q(Zj, xj) ≥
Q(Zi, xj) + Q(Zj, xi), which is equivalently written as:[

Q(Zi, xi) + Q
(
Zj, xj

)] − [
Q

(
Zi, xj

) + Q
(
Zj, xi

)] ≥ 0.

(20)

Elaborating on Eq. (20) via the fundamental theorem of
calculus, we obtain:[

Q(Zi, xi) + Q
(
Zj, xj

)] − [
Q

(
Zi, xj

) + Q
(
Zj, xi

)]
=

∫ xi

xj

∂Q(Zi, x)

∂x
dx−

∫ xi

xj

∂Q
(
Zj, x

)
∂x

dx

=
∫ xi

xj
−[
s(Zi, x) − s

(
Zj, x

)]
dx. (21)

Since xi > xj, Eq. (21) gives s(Zi, x) < s(Zj, x), which
contradicts with our initial assumption. In this way, we
have proved that there does not exist xi > xj such that
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s(Zi, x) > s(Zj, x), which confirms the soundness of this
lemma.
The reasoning behind the monotonicity condition in

Lemma 3 is that a higher unwillingness-to-participate user
type provides a lower effort to the edge server and thus, is
rewarded less, taking also into account Lemma 2.
Based on the above analysis, we can summarize the nec-

essary conditions of a feasible contract in the following
theorem.
Theorem 1 (Necessary Conditions): A feasible contract

W = {wi, 1 ≤ i ≤ KLM} must meet the following two
conditions concurrently: x1 ≥ · · · ≥ xi ≥ · · · ≥ xKLM and
r1 ≥ · · · ≥ ri ≥ · · · ≥ rKLM .

D. CONTRACT SUFFICIENCY
In this section, we resolve the problem of reducing the IR
and IC conditions, defined in Eq. (13) and Eq. (14), respec-
tively, as a means of obtaining and optimal solution for the
contract problem designed in Eq. (15) in Section III-B. The
outcome of this analysis is the definition of the sufficient
conditions of a feasible contract under the realistic scenario
of incompleteness of information.
Lemma 4 (IR Conditions Reduction): Under a feasible con-

tract, if the IR condition of the lowest utility user type,
i.e., the highest unwillingness-to-participate user type ZKLM ,
holds true, then the IR conditions of all other user types are
automatically satisfied:

UKLM(wKLM) ≥ 0 ⇔ Ui(wi) ≥ 0, 1 ≤ i ≤ KLM. (22)

Proof: The IC condition that holds between a user type
Zi, 1 ≤ i ≤ KLM and the lowest utility user type ZKLM is
Ui(wi) ≥ Ui(wKLM). Furthermore, for the minimum utility
user type it holds that UKLM(wKLM) ≤ Ui(wKLM), 1 ≤ i ≤
KLM. Thus, if UKLM(wKLM) ≥ 0, then Ui(wi) ≥ 0, 1 ≤ i ≤
KLM. This completes the proof.
The Lemma 4 allows the reduction of the KLM IR con-

straints of the optimization problem in Eq. (15) to a single
IR constraint, i.e., UKLM(wKLM) ≥ 0.

Next, we introduce the Pairwise Incentive Compatibility
(PIC) condition to facilitate the IC conditions reduction
process later in this section.
Lemma 5: Pairwise Incentive Compatibility (PIC): The

contract bundles wi,wj ∈ W, 1 ≤ i, j ≤ KLM, i �= j are

pairwise incentive compatible, denoted as wi
PIC⇐=⇒ wj, if the

following two conditions are concurrently satisfied: Ui(wi) ≥
Ui(wj) and Uj(wj) ≥ Uj(wi).
Lemma 6: IC Conditions Reduction: Under a feasi-

ble contract, the following condition holds true for any
i1 < i2 < i3:

If w1
PIC⇐=⇒ w2 and w2

PIC⇐=⇒ w3, then w1
PIC⇐=⇒ w3. (23)

Proof: To prove this lemma, we write the IC condi-
tions that are satisfied for the user types Zi1 and Zi2,
respectively, as:

Q
(
Zi1 , xi1

) + ri1 ≥ Q
(
Zi1 , xi2

) + ri2, (24)

and

Q
(
Zi2 , xi2

) + ri2 ≥ Q
(
Zi2 , xi3

) + ri3 . (25)

Since i1 < i2 < i3, from Theorem 1 we have xi1 > xi2 > xi3
and s(Zi1, x) < s(Zi2, x) < s(Zi3, x). Founded upon this,
it holds that

∫ xi2
xi3

[s(Zi2, x) − s(Zi1 , x)]dx ≥ 0, on which we
subsequently elaborate according to the fundamental theorem
of calculus as:∫ xi2

xi3

[
s
(
Zi2 , x

) − s
(
Zi1 , x

)]
dx

=
∫ xi3

xi2

∂Q
(
Zi2 , x

)
∂x

dx−
∫ xi3

xi2

∂Q
(
Zi1 , x

)
∂x

dx

= [
Q

(
Zi2 , xi3

) − Q
(
Zi2 , xi2

)] − [
Q

(
Zi1 , xi3

) − Q
(
Zi1 , xi2

)]
.

(26)

Therefore, the following condition holds, also, true:

Q
(
Zi2 , xi3

) − Q
(
Zi2 , xi2

) ≥ Q
(
Zi1 , xi3

) − Q
(
Zi1 , xi2

)
. (27)

By adding the three inequalities in Eq. (24), Eq. (25) and
Eq. (27) by parts, we get:

Q
(
Zi1 , xi1

) + ri1 ≥ Q
(
Zi3 , xi3

) + ri3 . (28)

Another set of IC conditions that can be written for the
user types Zi3 and Zi2 , is:

Q
(
Zi3 , xi3

) + ri3 ≥ Q
(
Zi3 , xi2

) + ri2 , (29)

and

Q
(
Zi2 , xi2

) + ri2 ≥ Q
(
Zi2 , xi1

) + ri1 . (30)

By applying similar steps to Eq. (26) via the use of the
fundamental theorem of calculus, we can easily conclude to
the next condition:

Q
(
Zi3 , xi2

) − Q
(
Zi3 , xi1

) ≥ Q
(
Zi2 , xi2

) − Q
(
Zi2 , xi1

)
. (31)

We add Eq. (29)-(31) by parts and we obtain:

Q
(
Zi3 , xi3

) + ri3 ≥ Q
(
Zi3 , xi1

) + ri1 . (32)

The combination of Eq. (28) and Eq. (32) proves that

w1
PIC⇐=⇒ w3, confirming the lemma.

The Lemma 6 enables the reduction of the KLM(KLM−1)

IC constraints of the optimization problem in Eq. (15) into
a set of 2(KLM − 1) PIC constraints between the adjacent
user types Zi and Zi+1, 1 ≤ i ≤ KLM − 1.

By combining our findings in Sections III-C and III-D so
far, we can summarize the sufficient conditions for a feasible
contract in the Theorem 2, below.
Theorem 2 (Sufficient Conditions): Under a feasible con-

tract, the IR and IC conditions can be reduced as:
1) x1 ≥ · · · ≥ xi ≥ · · · ≥ xKLM ,
2) UKLM(wKLM) ≥ 0,
3) ri+1 − Q(Zi+1, xi) + Q(Zi+1, xi+1) ≤ ri ≤ ri+1 +

Q(Zi, xi+1) − Q(Zi, xi), 1 ≤ i ≤ KLM − 1.
The first condition in Theorem 2 derives from the nec-

essary conditions in Theorem 1, while the second condition
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stems from the findings in Lemma 4 and pertains to the
IR conditions reduction. Concerning the third condition in
Theorem 2, this represents the PIC conditions, as defined in
Lemma 5, between two adjacent user types i and i+1, which
constitutes the sufficient condition that should be met as a
result of the IC conditions reduction procedure described in
Lemma 6.
Based on the preceding analysis and the reduced IR and

IC conditions listed in Theorem 2, the optimization problem
in Eq. (15) is equivalently transformed as follows:

max
W

V(W) =
KLM∑
i=1

Pri(h(xi) − ξri)

s.t. Conditions in Theorem 2. (33)

Without loss of generality and for ease in the optimal con-
tract bundles’ derivation, we consider the users’ rewards as
strictly increasing functions with their efforts in respect to
the fact that the edge server acts fairly and rewards more the
users that provide a higher effort, as described in Theorem 1,
and we define ri(xi) = √

Zixi. Hence, the edge server’s util-
ity function V(W), as described in Eq. (12), is concave as
the sum of concave functions on xi, 1 ≤ i ≤ KLM, while the
reduced constraints form a convex set. Thus, by applying
standard optimization methods and utilizing existing con-
cave/convex optimization tools [36], the optimal contract
bundles w∗

i = {x∗i , r∗i }, 1 ≤ i ≤ KLM.

E. BENCHMARK CONTRACT UNDER COMPLETE
INFORMATION
In this section, a benchmark contract-based incentive mech-
anism is introduced, which is related to the case of complete
information, in the sense that the edge server is a priori aware
of the users’ private information, i.e., their unwillingness-to-
participate user types. Under this ideal case, the edge server
can fully exploit the users’ efforts and marginally satisfy
their IR conditions to ensure their participation in the con-
tract. Hence, the optimization problem to be solved by the
edge server for each user type 1 ≤ i ≤ KLM, is written as
follows:

max
wi

vi = h(xi) − ξri, 1 ≤ i ≤ KLM (34a)

s.t. Q(Zi, xi) + ri = 0. (34b)

From Eq. (34b) we get r∗i = −Q(Zi, xi) = Zix2
i , while

Eq. (34a) is written as vi = h(xi) − ξri = c
1−λ

x1−λ − ξri,
based on the provided definitions of the functions Q(·), q(·),
h(·) earlier in this section. By substituting r∗i back to vi and
calculating the first order derivative of vi with respect to xi,
we get ∂vi

∂xi
= c

xλi
− 2ξZixi. By solving the equation ∂vi

∂xi
= 0

with respect to xi we obtain the optimal solution of the
optimization problem, which is expressed as x∗i = ( c

2ξZi
)

1
1+λ .

With reference to the feasibility of the optimization
problem in Eq. (34a)-(34b), by taking into account that
ξ ≥ 1, c ∈ [0, 1], λ ∈ (0, 1) and Zi ∈ [0.5, 2.5], 1 ≤ i ≤
KLM, the latter of which is determined by calculating the

extreme values of the term Zi = 1.5 + δi −βiγi, it holds that
x∗i ≥ 0, 1 ≤ i ≤ KLM. Additionally, considering the extreme
case that c = ξ = 1 and Zi = 0.5, under which the term c

2ξZi
takes its highest value that is equal to c

2ξZi
= 1, it is verified

that x∗i ≤ 1, 1 ≤ i ≤ KLM. Hence, the optimal solution x∗i is
within the required range [0, 1], yielding a feasible solution
to the problem.

IV. STACKELBERG GAME-BASED RESOURCE
ALLOCATION
After the completion of the multi-dimensional contract-based
incentive mechanism, each user n has autonomously - and
via the interaction with the edge server - determined its
optimal amount of effort, i.e., the percentage x∗n of the task
φndn that is offloaded at the edge, which is allowed to be
further transmitted and processed at the fog. Depending on
the user’s n application’s An characteristics, each user n is
represented by an unwillingness-to-participate user type Zi
and thus, the optimal contract bundle for this user is w∗

n =
{x∗n, r∗n} ↔ w∗

i ∈ W = {w∗
i , 1 ≤ i ≤ KLM}.

At this second stage, the joint communications and com-
puting resource allocation is pursued under a Stackelberg
game-theoretic approach, in which the edge server (i.e.,
the leader) determines each user’s n optimal offloaded task
φnd∗

n and the users (i.e., the followers) decide on their
optimal uplink transmission power p∗

n in an iterative manner,
by exchanging information from one another. Specifically,
with the term “task offloading optimization” we refer to
the optimal amount of bytes d∗

n offloaded by each user
n that determine the whole optimal amount of offloaded
task φnd∗

n . It should be noted that the joint computation
task offloading and uplink transmission power allocation
problem in NOMA-enabled computing environments, under
both the energy efficiency maximization and the delay/time
minimization objectives, as adopted in this paper and
presented later in this section, is generally non-convex
and NP-hard [23], [37], [38]. As a result, there does not
exist any algorithm that provides an optimal solution to
this joint problem in polynomial time. For this reason,
either approximation or alternating [39] optimization algo-
rithms are proposed in the literature to deal with it. Indeed,
the Stackelberg game-theoretic approach proposed in this
paper is aligned with both the decentralized and iterative
optimization needs of the considered two-variable problem.
Next, the optimization problems of the leader and follow-

ers are presented, while the overall incentive mechanism and
resource allocation framework is summarized in Algorithm 1.

A. LEADER’S OPTIMIZATION
Given the users’ uplink transmission power vector p =
[p1, . . . , pn, . . . , pN], the edge server seeks to maximize its
perceived satisfaction minus the end-to-end edge-fog com-
puting environment’s incurred energy overhead. To this end,
the edge server determines the vector of the optimal amount
of offloaded bytes d∗ = [d∗

1, . . . , d∗
n, . . . , d

∗
N], while meeting

the users’ end-to-end completion time and energy constraints,
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and its personal energy constraint that stems from its inherent
limitation on its available energy. Therefore, the correspond-
ing optimization problem that is treated by the edge server
is formulated as follows:

max
d

|N|∑
n=1

[
1 − e

2dn
Dn − C

(
Eoffn + Eexecn + En,offe + En,exece

)]
(35a)

s.t. 0 ≤ dn ≤ Dn, ∀n ∈ N (35b)

max
{
Toffn ,Texecn

}
+ max

{
Tn,offe , Tn,exece

}
≤ Tn, ∀n ∈ N

(35c)

Eoffn + Eexecn ≤ En, ∀n ∈ N (35d)
N∑
n=1

(
En,offe + En,exece

)
≤ Ee. (35e)

Regarding the physical meaning and interpretation of the

edge server’s utility function in Eq. (35a), the term 1 − e
2dn
Dn

constitutes a strictly increasing and concave function with
respect to each user’s n amount of offloaded bytes dn,
expressing the edge server’s satisfaction, which saturates
as its computational burden increases. The remainder of
Eq. (35a) constitutes the end-to-end edge-fog computing
environment’s total energy consumption (overhead), while
C ∈ R

+ is a cost-of-energy constant factor measured in [1/J].
Concerning the optimization problem’s constraints, Eq. (35b)
indicates the feasible range of values of each user’s amount
of offloaded bytes dn. Eq. (35c) represents each user’s n end-
to-end completion time requirement, which is calculated as
the sum of the maximum time overheads from the trans-
mission and the execution at the user and the edge server
layers, assuming that the wireless transmission and computa-
tion processes can be performed concurrently. Last, Eq. (35d)
and Eq. (35e) guarantee each user device’s and the edge
server’s energy consumption constraint, respectively, where
Ee [J] is the edge server’s maximum energy constraint.
The optimization problem in Eq. (35a)-(35e) is concave,

since the utility function is a sum of concave functions on
dn,∀n ∈ N and the constraints form a compact, i.e., closed
and bounded, and convex set. Therefore, in order to derive
the optimal solution, which is the vector of optimal amount
of offloaded bytes d∗ = [d∗

1, . . . , d∗
n, . . . , d

∗
N], existing

concave/convex optimization tools can be utilized [36].

B. FOLLOWERS’ OPTIMIZATION
Given the amount of offloaded bytes dn for each user n,
after broadcasting by the edge server to the users, the users’
uplink transmission power control takes place. Specifically,
the aim of each user is to distributively maximize its per-
sonal transmission-based energy efficiency, by optimizing its
uplink transmission power to the edge server, while satisfy-
ing its personal transmission time requirement. As a result,
the optimization problem to be solved by each user n is

given by:

max
pn

EEn(pn,p−n) = Rn
pn

,∀n ∈ N (36a)

s.t. 0 ≤ pn ≤ pmaxn ,∀n ∈ N (36b)

Gnpn −
n−1∑
n′=1

Gn′pn′ ≥ ptol, n = 2, . . . ,N (36c)

Toffn ≤ Toff ,maxn ,∀n ∈ N . (36d)

In the above optimization problem, Eq. (36a) represents the
user’s n energy efficiency utility function, where p−n =
[p1, . . . , pn−1, pn+1, . . . , pN] is the vector of uplink trans-
mission powers of all users except for user n. The constraint
in Eq. (36b) guarantees the user’s satisfaction of its maxi-
mum uplink transmission power budget pmaxn , while Eq. (36c)
guarantees the successful decoding of the user’s signal via
the SIC technique at the edge server’s receiver, according
to the receiver’s sensitivity/tolerance ptol. Eq. (36d) refers to
the user’s personal transmission time constraint Toff ,maxn [s].

To capture the interplay among the different users’ power
control procedure, a non-cooperative game is formulated
among them, denoted as � = [N , {�n}∀n∈N , {EEn}∀n∈N ],
where N is the set of players, i.e., the users, �n is each
user’s strategy set of feasible power levels, as imposed by the
constraints in Eq. (36b)-(36d), and EEn is each user’s utility
function. The non-cooperative game � is treated as a dis-
tributed utility maximization problem, in which each user n
updates its uplink transmission power pn autonomously, by
possessing prior information about the other users’ trans-
mission power levels p−n, as broadcasted by the edge
server.
Towards solving the non-cooperative game �, the concept

of Nash equilibrium is adopted, and the optimal users’ strat-
egy vector p∗ = [p∗

1, . . . , p
∗
n, . . . , p

∗
N], from which no user

has the incentive to deviate given the strategies of the rest
of the users, is determined via a Best Response Dynamics
(BRD) algorithm. The interested reader may refer to [40]
regarding the definition of the Nash equilibrium, as well as
the description of the BRD algorithm. To ensure the existence
of at least one Nash equilibrium point for the non-cooperative
game � and thus, the convergence of the users’ strategies to
the Nash equilibrium, we adopt the theory of the n-person
generalized concave games [41].
Theorem 3 (Existence of Nash Equilibrium): The non-

cooperative game � is a n-person generalized concave game
and admits at least one Nash equilibrium point, if the
following conditions hold true [41]:

1) the strategy sets �1, . . . , �N are non-empty, compact,
convex subsets of finite dimensional Euclidean spaces,

2) all utility functions EE1, . . . ,EEN are continuous on
� = �1 × · · · × �N ,

3) every utility EEn is a quasi-concave function of pn
over �n if all the other strategies are held fixed.

The energy efficiency problem under consideration has
been extensively studied in the literature and it is well
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Algorithm 1 Incentive and Resource Allocation Framework
1: Initialize the discrete sets D, �, T , B, �, �.
2: Calculate the unwillingness-to-participate user types
Zi, 1 ≤ i ≤ KLM and sort them in ascending order.

3: Initialize ξ , c, λ, r(·), q(·), h(·).
4: Design the optimal contract bundles w∗

i = {x∗i , r∗i }, 1 ≤
i ≤ KML by solving Eq. (33).

5: Initialize the set N and the edge-fog computing environ-
ment, including users’, edge and fog servers’ locations.

6: Initialize Dn, φn, Tn, En, Gn, pmaxn , Toff ,maxn , Fn, σn, Ee,
Ge, pe, We, ae, Fe, σe, Wf , af , ρ, I0, ptol, C.

7: Map each user to its optimal contract bundle w∗
n =

{x∗n, r∗n} ↔ w∗
i ∈ W = {w∗

i , 1 ≤ i ≤ KLM}.
8: Sort the users in ascending order according to Gn.
9: Initialize randomly pn ∈ [0, pmaxn ],∀n ∈ N .
10: Set i = 0.
11: repeat
12: Set i = i+ 1.
13: Determine the optimal amount of offloaded bytes

d∗(i)
n ,∀n ∈ N by solving Eq. (35a)-(35e).

14: Set j = 0.
15: repeat
16: Set j = j+ 1.
17: for n ∈ N do
18: Determine the optimal uplink transmission power

p∗(j)
n by solving Eq. (36a)-(36d).

19: end for
20: until |p∗(j)

n − p∗(j−1)
n | ≤ ε,∀n ∈ N , where ε ≈ 10−5.

21: until |d∗(i)
n − d∗(i−1)

n | ≤ ε,∀n ∈ N , where ε ≈ 10−5.

known that bears the properties that are summarized in
Theorem 3 [42], [43], while an extensive proof of Theorem 3
can be found in our prior work in [44]. Given that each
follower’s, i.e., user’s, distributed optimization problem in
Eq. (36a)-(36d) is quasi-concave due to the quasi-concave
energy efficiency function, this can be effectively treated
by applying the Dinkelbach’s algorithm [43], [45], which
transforms the quasi-concave problem into a series of con-
cave problems that are iteratively solved until convergence.
Accordingly, each concave problem can be solved based on
existing optimization tools [36].
After the convergence of the non-cooperative game,

the users’ optimal uplink transmission powers p∗ are
fed back to the edge server and the next iteration of
the Stackelberg game is established. This procedure is
repeated until convergence of the overall Stackelberg game
is reached and the Stackelberg equilibrium point (d∗,p∗)
is found, according to which neither the edge server nor
the users have any incentive to deviate from, as shown in
Algorithm 1.

C. COMPUTATION COMPLEXITY
To facilitate the derivation of the overall proposed incentive
mechanism and resource allocation algorithm’s computation

complexity, as presented in Algorithm 1, the following
algorithmic complexities are considered alone. First, the
asymptotic complexity of a convex optimization problem
is polynomial in the number of the optimization vari-
ables [43], [46], which applies for the optimization problems
in Eq. (33), Eq. (35a)-(35e) and Eq. (36a)-(36d), while
the Dinkelbach’s algorithm has super-linear convergence
rate [45], [47]. The users’ sorting with respect to their chan-
nel gain can be performed with O(N2) complexity via the
Quicksort algorithm, while for the mapping of each user
to its optimal contract bundle a searching algorithm can be
employed, e.g., the Binary Search Algorithm, whose algo-
rithmic complexity is O(log(KLM)) in our case, due to the
KLM existing contract bundles. The rest typical mathematical
manipulations are of O(1) complexity.

We indicate as I and J the total number of iterations
required for the Stackelberg and the non-cooperative game
among the users to converge, respectively. Also, following
commonly used practises, we denote as ID the total number
of iterations required for the Dinkelbach algorithm to con-
verge, when solving a single user’s optimization problem in
Eq. (36a)-(36d). As a result, considering that the distributed
non-cooperative game among the users is performed in par-
allel, the overall computation complexity of Algorithm 1 is
calculated as O(2·KLM+N ·log(KLM)+N2+I·(N+J·ID·1)).
Indicative numerical results that depict the actual number
of Stackelberg game iterations, which are required until
convergence is met, are enclosed in Section V-B below.

V. EVALUATION AND RESULTS
This section is devoted to the performance evaluation of the
proposed incentive mechanism and the joint communication
and computing resource allocation procedure, via modeling
and simulation. First, we examine the operational char-
acteristics of the multi-dimensional contract-based incen-
tive mechanism, considering, also, the benchmark contract
under complete information (as described in Section III-E).
Subsequently, we focus on validating the operation and
performance of the Stackelberg game-based joint commu-
nication and computing resource allocation, accounting for
its convergence behavior, as well as comparing it against var-
ious alternative baseline offloading approaches. It should be
noted that NOMA has been adopted as an underlying tech-
nique to facilitate the users’ multiplexing and transmissions
to the edge.
The simulation setting and the parameters that were used

throughout the numerical evaluation that is enclosed in the
remainder of this section are initialized as follows. We
consider a two-layer edge-fog computing environment, con-
sisting of an edge server, which lies 200 m away from a
fog server, and N users deployed with 20-meter increas-
ing distance from the edge server that form a NOMA
cluster. Each user has a computing application An, whose
characteristics can be derived from the following sets:
D = {1, 1.2, 1.4} Mbits, � = {20, 30, 40} CPU cycles/bit,
T = {0.08, 0.1, 0.12} s and E = {1} J. As a result, we
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FIGURE 3. Pure evaluation of multi-dimensional contract under different values of the three-dimensional user types (β, γ, δ).

assume that there exist K × L × M = 3 × 3 × 3 differ-
ent combinations of user application characteristics. The
users offload part of their computation tasks at the edge
server, while a part of them can be further forwarded by
the edge server to the fog, if beneficial. Both the users-
to-edge server and edge-to-fog server transmissions are
performed wirelessly, while the corresponding bandwidth in
the two transmission levels is defined as We = 5 MHz and
Wf = 1 MHz, accordingly. Other communications-related
parameters are set as: pmaxn = 24 dBm, Toff ,maxn = 0.05 s,
pe = 24 dBm, ae = 3.5, af = 2, Ee = 200 J, ρ = −20 dB,
I0 = −174 dBm/Hz, ptol = dBm [44]. Considering the
computing-related parameters, we consider Fn = 109 CPU
cycle/s and σn = 10−27 J/CPU cycle for each user, and
Fe = 5×1011 CPU cycles/s and σe = 10−29 J/CPU cycle for
the edge server [24]. Last, regarding the multi-dimensional
contract we define the parameters c = 0.5, λ = 0.8,
ξ = 1, while we set C = 104 in the Stackelberg game,
subsequently.
Finally, for statistical purposes, the numerical results

enclosed in Section V-B, below, which pertain to the
Stackelberg game-based resource allocation procedure, have
been averaged over 100 repetition corresponding to different
users’ computing application characteristics.

A. EVALUATION OF MULTI-DIMENSIONAL
CONTRACT-BASED INCENTIVE MECHANISM
Given that there exist K×L×M = 3 × 3 × 3 different com-
binations of user application characteristics, then, 3 × 3 × 3

different unwillingness-to-participate user types are formed,
capturing the (un)willingness to allow part of their initially
offloaded tasks at the edge to be further forwarded and pro-
cessed at the fog. In this section, we first scrutinize the
pure operation of the designed multi-dimensional contract,
by analyzing the behavior and trend of the resulting 3×3×3
unwillingness-to-participate (or virtual) user types and their
suited optimal efforts, under different values of the three-
dimensional private information (β, γ, δ). In particular, in
Fig. 3, the values of the virtual user types and their optimal
efforts are depicted as a function of the different values
of (β, γ, δ), assuming that are sorted in ascending order
as β1 ≤ β2 ≤ β3, γ1 ≤ γ2 ≤ γ3 and δ1 ≤ δ2 ≤ δ3. From
Fig. 3(a)-3(c), we observe that as the delay sensitivity evalua-
tion type δ increases, then the values of the virtual user types
increase, resulting in lower provided efforts to the edge server
in Fig. 3(d)-3(f), which in turn, verify the monotonicity con-
dition of the contract in Lemma 3. Focusing on a single value
of δ, e.g., δ1 in Fig. 3(a), then it can be easily deduced that
a low value of either parameter β or γ results in a higher
value of the virtual user type, according to the definition of
the unwillingness-to-participate parameter in Eq. (17). As a
result of the higher unwillingness to participate in the con-
tract, the users’ efforts decrease, as shown in Fig. 3(d). The
same observation holds for the instances δ2 and δ3 regard-
ing the values of the virtual user types in Fig. 3(b)-3(c) and
their optimal efforts in Fig. 3(e)-3(f), respectively. This is
quite intuitive, since β and γ represent an evaluation of the
application size and intensity, higher values of which show
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FIGURE 4. Comparative evaluation of multi-dimensional contract under incomplete and complete information cases.

the “need” to participate in the contract in order to offload
as many bytes as possible.
Next, we proceed to the comparative evaluation of the

proposed multi-dimensional contract, taking into account the
benchmark complete information contract case. To this end,
in Fig. 4, we consider the K × L × M virtual user types
sorted in ascending order as Z1(x) ≤ · · · ≤ Zi(x) ≤ · · · ≤
ZKLM(x), 1 ≤ i ≤ KLM, indicating them by their sorted index
(horizontal axis), and we examine the values of different
metrics, such as their efforts, rewards or utilities (vertical
axis), under both the incomplete and complete information
cases. All graphs in Fig. 4(a)-4(d) validate the monotonic
behavior of the designed contract, according to which a
higher unwillingness-to-participate/virtual user type provides
a lower effort to the edge server, and hence, is rewarded less,
yielding at lower utilities for both itself and the edge server.
Evidently, in the complete information case, the edge server
designs contract bundles that require higher efforts to be pro-
vided by the users in exchange for lower rewards compared
to the incomplete information case. This naturally stems
from the fact that the edge server knows a priori the users’
types and fully exploits their efforts, by marginally ensur-
ing their participation in the contract, i.e., the satisfaction of
their Individual Rationality (IR) conditions, as expressed in
Eq. (34b).
Accordingly, in the complete information case, each vir-

tual user type perceives a zero utility, as illustrated in
Fig. 4(c), while the edge server achieves a higher utility per
user type under such an ideal complete information avail-
ability case compared to the incomplete information one

(Fig. 4(d)). In order to complement our evaluation of the
multi-dimensional contract-based incentive mechanism, we
investigate the derived optimal contract bundles’ compliance
to the Incentive Compatibility (IC) condition in Definition 2.
For this reason, the virtual user types of index 3, 13 and
23 are indicatively selected and their utility values are plot-
ted over all the K × L×M contract bundles that have been
designed by the edge server (horizontal axis), as shown in
Fig. 4(e). Indeed, it can be easily observed that the utility
of either virtual user type from the 3, 13 and 23 is max-
imized when selecting the contract bundle that is tailored
to this specific type, verifying the incentive compatibility of
the designed contract.

B. EVALUATION OF NON-COOPERATIVE GAME-BASED
OFFLOADING MECHANISM
In this section, we aim to elucidate the operational char-
acteristics of the proposed Stackelberg game-based overall
communication and computing resource allocation proce-
dure. To this end, we initially study the pure performance and
convergence behavior of the proposed Stackelberg game, by
examining the progression in the values of different metrics
as a function of the different iterations that are required for
the game to converge. In particular, Fig. 5(a)-5(b) presents
the mean users’ transmission power levels and amount of
offloaded bytes, accordingly, with respect to the corre-
sponding Stackelberg game iteration index. The different
curves that are incorporated in Fig. 5(a)-5(b), correspond
to different scenarios with respect to the number of users
existing in the system, i.e., N = {3, 5, 7, 9}, that share the
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FIGURE 5. Convergence evaluation of Stackelberg game-based resource allocation under different number of users N .

same wireless access bandwidth and are multiplexed via
the NOMA technique. Additionally, Fig. 5(c) depicts the
edge server’s utility, as defined in Eq. (35a) in the leader’s
optimization problem in Section IV-A, as a function of the
Stackelberg game iteration index. The results reveal that the
overall interaction between the leader and the followers, via
the Stackelberg game, is completed after a small number of
iterations (i.e., approximately I = 6 iterations for practical
purposes), while the number of iterations required increases
with the number of the users existing in the NOMA cluster.
This can be easier noticed and verified by comparing the
curves that regard N = 3 and N = 9 number of users in
Fig. 5(a)-5(c). Furthermore, it is confirmed that as the num-
ber of users increases, then their mean consumed uplink
transmission power, as derived from the non-cooperative
game among them in Section IV-B, increases as well,
whereas their mean offloaded bytes to the edge server
decrease, as calculated by the leader’s optimization problem
in Section IV-A. On the one hand, the latter originates from
the fact that the overall sensed interference by the users
within the NOMA cluster increases, affecting, i.e., reducing,
their achieved data rate and hence, increasing the required
time to transmit their data. On the other hand, this behavior
is, also, encouraged by the edge server’s, i.e., the leader’s,
utility function, which expresses the edge server’s dissatis-
faction and disutility from the increase in the amount of
offloaded bytes by each user and is denoted by the term

1−e
2dn
Dn in Eq. (35a). On the contrary, considering the abso-

lute increase in the sum users’ offloaded bytes due to the
increase in the number of users in the system, the edge
server’s utility increases, as can be seen in Fig. 5(c).
Subsequently, we aim to investigate the effectiveness and

efficiency of the proposed Stackelberg game-based resource
allocation, by comparing it against various alternative base-
line offloading approaches. Specifically, in our comparative
analysis we consider the cases that the users’ tasks are com-
puted: exclusively locally (“Only local”), at the edge (“Only
edge”) or at the fog (“Only fog”), as well as indicative
intermediate cases that 20%, 33% or 40% of the users’
total bytes are computed locally, denoted as “20% local”,
“33% local” and “40% local”, respectively, are also taken

into account. In these latter cases the rest offloaded amount
of bytes, i.e., 80%, 67% and 60% of the overall user
application bytes, is equally split between the edge and
fog server layers. Last, we, also, invoke the “Random”
offloading baseline case, under which a random amount
of bytes is offloaded at the edge and fog server layers.
At this point, it should be noted that for fairness pur-
poses in all of the aforementioned offloading approaches
that require users-to-edge server wireless transmissions, the
non-cooperative game among the users that determines their
optimal uplink transmission powers to the edge, is performed
without exception.
Fig. 6(a) presents the sum users’ end-to-end time

overhead, which is calculated based on Eq. (35c), with
respect to the different offloading approaches and different
number of users existing in the system. Apparently, our
proposed approach exhibits the lowest sum users’ end-to-
end time overhead, with the lowest marginal increase with
the number of the users, except for the “Only local” case,
which is benefited in terms of time by the zero users-to-
edge server and edge-to-fog server wireless transmissions.
However, as clearly shown in Fig. 6(b), this latter behavior
of the “Only local” case occurs at the cost of much higher
energy consumption (i.e., worst performance among all alter-
natives) for the energy-constrained user devices due to local
execution, as is discussed later in this section.
In order to better visualize the effect of the increased

users’ end-to-end time overhead on the satisfaction of their
completion time requirement Tn,∀n ∈ N , we summarize
the percentages of the users that successfully met their time
constraints in Table 1, considering all the aforementioned
offloading alternatives for different number of users in the
system. It should be noted that in the designed simulation
setup, the “Only local” case provides always a feasible solu-
tion in terms of user time satisfaction, though at the cost
of high energy consumption from the users’ perspective. As
clearly demonstrated by the provided results in Table 1, the
proposed approach proves to be the only one among the rest
of the examined offloading alternatives that allows for the
satisfaction of the users’ completion time constraints under
varying number of users. Especially, as the number of users
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FIGURE 6. Comparative evaluation of Stackelberg game-based resource allocation under different offloading approaches and number of users N .

increases, e.g., N = 9, the majority of the baseline offloading
approaches fail to satisfy the users’ requirements, while in
most cases the percentage of satisfied users drops signifi-
cantly below 50%. Therefore, it becomes apparent, that the
dynamic and adaptive features of our proposed optimization-
driven approach, achieve the 100% assurance of each user’s
end-to-end completion time requirement in all considered
settings.
Continuing, in Fig. 6(b), the sum users’ energy over-

head, which accounts for both the wireless transmissions
to the edge and their local computation energy consump-
tion, according to Eq. (35d), is depicted, verifying that
the proposed approach yields the lowest sum users’ energy
consumption along with the “Only edge” and “Only fog”
baseline cases. However, it is reminded that these other two
alternatives, as shown in Table 1, fail to meet the user time
constraints for most of the users in most of the different
number of users cases, thus resulting in lower user satisfac-
tion percentages compared to the proposed one. Concerning
the edge server’s energy consumption, which is derived fol-
lowing Eq. (35e) and accounts, also, for both the wireless
transmission and the computation energy overheads, Fig. 6(c)
demonstrates that in our proposed approach, the edge server
operates at its maximum allowed energy consumption point,
as denoted by the Ee constraint, while the “Only fog” case
intuitively incurs significantly low energy consumption to the
edge, at the excessive cost of increased users’ energy con-
sumption. It is noteworthy that in Fig. 6(c), the “Only local”
case that results in zero edge server’s energy consumption
is omitted due to the inherent limitation of the logarithmic
scale used. Regarding the rest of the alternative scenarios,
i.e., “20% local”, “33% local”, “40% local” and “Random”,
they appear to yield similar edge server energy consumption,
slightly exceeding the edge server’s upper energy consump-
tion point Ee as the number of users increases, in contrast to
the “Only edge” scenario, which steadily exceeds the edge
server’s upper energy consumption bound, having to deal
with the whole system’s computation burden.

VI. CONCLUSION AND FUTURE WORK
In this paper, the paradigm of edge-fog collaborative comput-
ing was promoted, by shifting the selfish users’ preference

TABLE 1. Percentage of users that satisfy their end-to-end time requirement under
different offloading approaches.

from the prevailing edge service layer to the upper fog
computing layer, while accounting for the users’ level of
delay tolerance. To achieve this, an incentive mechanism
was designed, based on a multi-dimensional contract theory
model, which allows for the users’ characterization and rep-
resentation by multi-dimensional user types. According to
their multi-dimensional types, the users autonomously select
their efforts to the edge server, which are mapped to the
users’ optimal amounts (portions) of their tasks that are ini-
tially offloaded at the edge, which can be further forwarded
and processed at the fog, in exchange to some reward.
The proposed incentive mechanism was complemented

by the users’ joint computation task offloading and uplink
transmission power allocation via a Stackelberg game played
between the edge server and the users. The edge server, hav-
ing prior information about each user’s optimal amount of
task that is allowed to be further offloaded at the fog decides
the corresponding user’s optimal task offloading strategy at
the edge, which maximizes its own utility. Next, the users
obtain their optimal uplink transmission power levels that
maximize their personal communications-related energy effi-
ciency, by participating in a non-cooperative game among
themselves. The performance and efficiency of the overall
incentive mechanism and resource allocation framework was
validated via modeling and simulation, and its superiority
and tradeoffs against alternative offloading strategies were
demonstrated.
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Part of our current and future work refers to the inclusion
of multiple edge servers within the two-layer computing
environment, which may bear different characteristics and
capabilities from both the communication and the computing
perspective. Under such a multi-server setting, the problem of
the most beneficial and optimal user-to-edge server associa-
tion needs to be addressed, while at the same time promoting
the competition between different edge and/or fog resource
providers. In such a multi-server environment, the differ-
ent edge servers should be inevitably distinguished, not only
based on their different communication and computing char-
acteristics, but also based on their offered contract-theoretic
rewards back to the users.
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