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Abstract—The Minimum Collisions Assignment in an interde-
pendent networked system is the problem of assigning a finite
set of resources over the nodes of the network, such that the
number of collisions, i.e., the number of interdependent nodes
receiving the same resource, is minimized. It has been shown in
the literature that, when the number of resources is larger than
the maximum degree of the underlying graph, there exists a
randomized algorithm which converges, with high probability,
to an assignment of resources having zero collisions. In this
work we investigate the case of a resource-constrained networked
system, where the number of resources is less than or equal to
the maximum degree of the underlying graph. We provide and
analyze a distributed, randomized, algorithm that converges in a
logarithmic number rounds to an assignment of resources over
the network for which every node has at most a certain number
of collisions.

Index Terms—Graph coloring, Defective coloring, Games on
graphs, Greedy algorithms, resource allocation.

I. INTRODUCTION

In this article we shall be concerned with the minimum
collisions assignment (henceforth MCA) problem in inter-
dependent networked systems. Such a system is typically
represented in the form of a finite graph, whose vertices and
edges correspond to the networked nodes and their in-between
dependencies, respectively, and which will be referred to as
the underlying graph of the system. Given an interdependent
networked system, the MCA problem is the problem of
assigning a finite set of resources to the nodes of the network
in such a way that the number of collisions, i.e., the number
of pairs of interdependent nodes that are assigned the same
resource, is minimized. This is a graph coloring problem:
instead of assigning resources to the nodes of the network, one
may equivalently consider the problem of assigning colors to
the vertices of the underlying graph, and the MCA problem
is then equivalent to the problem of assigning a given number
of colors over the vertices of the graph in such a way that the
number of monochromatic edges is minimum. The problem is
known to be NP-hard (see [1]).

An example of a MCA problem in interdependent net-
worked systems is the, classical, channel assignment problem
in wireless networks under frequency and/or time domains.

This research work was supported by the Hellenic Foundation for Research
and Innovation (H.F.R.I.) under the “1st Call for H.F.R.I. Research Projects to
support Faculty members and Researchers and the procurement of high-cost
research equipment grant” (Project Number: HFRI-FM17-2436).

Several graph-coloring algorithms have been proposed over the
years tailored to WiFi channel assignment [2], Resource Block
allocation in small cell and Device-to-Device communication
networks [1], [3], and time scheduling in Wireless Sensor
Networks [4]. Under the aforementioned channel assignment
problem, the different wireless links are regarded as vertices
and the wireless channels as colors, and various graph coloring
variants are examined. More recently, the problem of content
placement/caching has been, also, considered in wireless net-
works under the prism of graph coloring. In such a setting,
a specific number of files, comprising the content, needs to
be assigned to the different base stations for caching in order
to optimise their retrieval by potential users and reduce the
transmission time through the backhaul [5].

Let us remark that the majority of the literature appears to
focus on MCA problems for which the number of available
colors (resources) is larger than the maximum degree of the
underlying graph, and several algorithms have been proposed,
both centralized and distributed, that result in colorings having
zero collisions. However, it appears that instances of the MCA
problem with “few”, i.e., less than or equal to the maximum
degree of the underlying graph, colors (e.g., channels or
resource blocks) are much less investigated and in this paper
we aim towards filling this gap. Respecting the need for
decentralized resource management, we capitalize on each
networked node’s local-awareness with respect to its neigh-
bors’ allocated resources and propose a distributed approach
to the MCA problem in the case of there being ”few” available
colors. In the following we refer to the potential entities/users
of an interdependent networked system as players, and to the
set of resources as colors.

II. BASIC DEFINITIONS & PROBLEM FORMULATION

All graphs considered in this text are finite, without loops,
and undirected. Throughout the text, given a positive integer
k, we denote by [k] the set {1, . . . , k} and, given a finite set F ,
we denote by |F | its cardinality. Given a graph G = (V,E)
and a vertex v ∈ V , we let NG(v) = {u ∈ V : (u, v) ∈
E} be the neighborhood of v in G. The degree of v equals
degG(v) = |NG(v)| and the maximum degree of vertices in G
is denoted ∆G. A k-coloring of G is a function χ : V → [k].
Given a k-coloring χ of a graph G = (V,E), and a subset
A ⊂ V , we denote by χ(A) :=

⋃
v∈A{χ(v)} the set of colors
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of the vertices in A. Moreover, the collision number of χ is
defined as CG(χ) = |{e = (u, v) ∈ E : χ(u) = χ(v)}|, and
the collision number of a vertex v ∈ V under a k-coloring χ of
G is defined as CG(v;χ) = |{u ∈ NG(v) : χ(u) = χ(v)}|. In
other words, CG(χ) equals the cardinality of the set consisting
of all monochromatic edges of G under the coloring χ, and
CG(v;χ) is the number of neighbors of v that receive the same
color as v.

A k-coloring χ of G = (V,E) is called s-colliding if
CG(χ) ≤ s; it is called d-defective if CG(v;χ) ≤ d holds
true for all v ∈ V . A 0-colliding coloring is referred to as a
proper coloring in the literature. As already mentioned in the
introduction, the MCA problem is a graph coloring problem
which is equivalent to the following.

Problem 1 (MCA Problem). Given a graph G = (V,E) and
a positive integer k, determine

Ck(G) := min
χ
CG(χ) ,

where the minimum is over all k-colorings of G.

III. RELATED WORK

In the classical graph coloring problem (GCP) the objective
is to find the minimum positive integer k for which a given
graph G on n vertices admits a 0-colliding k-coloring. This
minimum value of k is referred to as the chromatic number
of G, and is denoted chr(G). The MCA problem is, in some
sense, dual to the GCP. In the setting of the MCA problem, the
parameter k is fixed and the objective is to find a k-coloring
of a given graph G on n vertices that has minimum collision
number, among all k-colorings of G. Observe that when k ≥
chr(G) then the GCP implies that the MCA problem admits a
0-colliding k-coloring. In particular, it is well known that when
k ≥ ∆G+1 the graph G admits a 0-colliding k-coloring, and
one can obtain such a coloring using a variety of algorithms,
both centralized and distributed. It is also well known that,
when k ≥ ∆G+1, a 0-colliding coloring of G can be found in
linear time by a centralized algorithm. However, the problem
becomes more delicate when the algorithm is required to be
distributed. In this work we shall be interested in distributed
algorithms for the MCA problem.

Distributed algorithms for GCP are provided in [6] and [7].
Both algorithms result in a 0-colliding coloring of a graph in
O(log(n)) rounds, when the number of available colors is at
least ∆+1, but require that each player communicates to her
neighbors whether she has any conflict or not. A purely game-
theoretic distributed algorithm for the GCP is provided in [8];
the algorithm does not require any cooperation/communication
between the players and yields a 0-colliding coloring of
a graph in O(log(n)) rounds, when the number of colors
available is at least ∆G + 2. The algorithm from [8] has
been improved in [1] to a distributed algorithm that yields
a 0-colliding coloring of a graph in at most O(∆G · log(n))
rounds, when the number of available colors is at least ∆G+1
colors, but requires communication among neighbors. Another
improvement of the algorithm in [8], which likewise assumes

no cooperation/communication among neighbors and which
yields a 0-colliding coloring in O(log(n)) rounds when the
number of available colors is at least ∆G+1, can be found in
[9]. In other words, when k ≥ ∆G + 1, it holds CG(k) = 0,
for any graph G.

In this article we focus on instances of the MCA problem
for which k ≤ ∆G which, to the best of our knowledge,
appear to be less investigated. One approach to the problem is
to allow the possibility of leaving some vertices uncolored,
and thus employ incomplete 0-colliding k-colorings of the
underlying graph (see [10] and references therein). Another
approach is based on dispersion games (see [11] and [12]),
but only apply to instances of the MCA problem for which
the underlying graph is complete. Our approach is based on
defective colorings (see [13]), and builds upon ideas from [8].
In particular, in [8] the authors define the network coloring
game, which is played on a graph G, and study the dynamics
of the game when the players adopt a particular greedy,
randomized, strategy. It is shown in [8] that the dynamics of
the network coloring game under the aforementioned greedy
strategy converge to a Nash equilibrium that gives rise to
a 0-colliding k-coloring of G, provided that k ≥ ∆G + 2.
In this article, following a similar approach, we introduce
the defective coloring game and study its dynamics when
a particular greedy, randomized, strategy is adopted by the
players. Our main result states that the dynamics of the game
under this greedy strategy converge to a Nash equilibrium
that gives rise to a defective coloring of the underlying graph
which, in turn, provides an upper bound on the number of
collisions.

IV. MAIN RESULT: DEFECTIVE COLORING GAME

In this section we introduce the defective coloring game,
which may be seen as a variant of the network coloring game
introduced in [8]. We fix a graph G = (V,E) having n = |V |
vertices and maximum degree ∆G, as well as two integers k, d
such that k ∈ {2, . . . ,∆G} and d ∈ [∆G − 1]. The defective
coloring game on the graph G, denoted DCG(G; k, d), is
defined as follows.

The players of DCG(G; k, d) are the vertices of G, and
participate in a game that is played over a number of rounds.
In every round all players simultaneously and individually
choose a color from their set of available colors, which is
assumed to be the set [k]. Thus, after round t, the choices of
the players give rise to a k-coloring of G, which is denoted
χt. The players of DCG(G; k, d) only have local information
of the graph: they can only observe the colors chosen by their
neighbors, and are not allowed to communicate or cooperate
with one another. A player v ∈ V is said to be happy
after round t if her collision number under χt is at most d;
i.e., when CG(v;χt) ≤ d. Otherwise the player is unhappy.
The payoff to a player in DCG(G; k, d) is 1 when she is
happy, and 0 when she is unhappy, and a configuration of
colors for which every player receives payoff 1 is a Nash
equilibrium of the DCG(G; k, d), in the sense that no player
has the incentive to unilaterally change strategy under such
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a configuration. Observe that, when the players have chosen
colors that constitute a Nash equilibrium, the corresponding
k-coloring of the graph is d-defective.

In this work we define a symmetric strategy for the players
in DCG(G; k, d) (i.e., a strategy that is the same for all play-
ers) and show that it achieves convergence to Nash equilibrium
after a finite number of rounds. In order to formally define
this strategy we need to introduce some notation. Let χt(v)
denote the color chosen by player v ∈ V after round t, and
let χt(N (v)) be the set of colors chosen by the neighbors of
v after round t.

Greedy strategy. Suppose that k = ∆G− s and d = s+2,
for some fixed s ∈ {0, 1, . . . ,∆G − 3}. Assume further that
each player in DCG(G; k, d) adopts the following strategy:
if a player, say v, is happy after a certain round, say t, then
she sticks to her choice in all subsequent rounds, i.e., χs(v) =
χt(v), for all s > t. If she is unhappy then in the next round
she changes color, and chooses uniformly at random a color
from the set [k] \ χt(N (v)).

In other words, under the Greedy strategy, a player who is
unhappy after a certain round, say t, chooses in the next round
a color uniformly at random from the set consisting of those
colors that are not chosen by her neighbors after round t. The
corresponding algorithm is summarized in Algorithm 1.

Remark 1. Notice that, when the players of DCG(G; k, d),
with k = ∆G − s and d = s + 2, adopt the Greedy strategy,
a player who is happy after a certain round remains happy
in all subsequent rounds. Furthermore, if player v is unhappy
after round t, then it holds |[k]\χt(N (v))| ≥ 2. In particular,
an unhappy player has always at least two available colors
to choose from in the next round.

Now suppose that all players in DCG(G; k, d) adopt the
Greedy strategy. For each v ∈ V , let τv be the first round
after which player v is happy. Notice that τv is a random
variable and that τ := maxv∈V τv is the first round after
which the game reaches a Nash equilibrium. Our main result
states that the expected value of τ is of logarithmic order,
and reads as follows. Recall that, given two random variables
X,Y assuming non-negative values, the random variable X is
said to be stochastically smaller than the random variable Y ,
denoted X ≤st Y , when it holds P(X > t) ≤ P(Y > t), for
all t. In particular, X ≤st Y implies that E(X) ≤ E(Y ).

Theorem 1. Let G be a graph on n vertices and maximum
degree ∆G ≥ 3. Let k, d be fixed positive integers such that
k = ∆G− s and d = s+2, for some s ∈ {0, 1, . . . ,∆G− 3}.
Suppose that each player in DCG(G; k, d) adopts the Greedy
strategy. Let τ be the first round after which all players are
happy. Then, for any starting assignment of colors to the
vertices, it holds that τ is stochastically smaller than a random
variable T which satisfies

E(T ) ≤ 4

µ
(1 + log(n)) and Var(T ) ≤ 16 · n

µ2
,

where µ = − log
(
1− 1−1/4d−1

1−1/5d−1

)
.

Algorithm 1 Greedy strategy algorithm.

1: Initialize the graph G = (V,E) of the interdependent
networked system, having maximum degree ∆G, and a
positive integer s ∈ {0, 1, . . . ,∆G − 3}.

2: d← s+ 2
3: k ← ∆G − s
4: for each v ∈ V do
5: Choose c0 randomly from the set A0(v) := {1, . . . , k}.
6: t← 0
7: while CG(v;χt) ≥ d+ 1 do
8: t← t+ 1
9: At+1(v)← [k] \ χt(N (v))

10: Choose a color ct+1 uniformly at random from the
set At+1(v).

11: end while
12: Return ct+1.
13: end for

In other words, when s does not depend on n and the players
in the defective coloring game adopt the Greedy strategy,
the game reaches a d-defective k-coloring of the graph in
O(log(n)) expected number of rounds. Now the number of
monochromatic edges in such a coloring provides an upper
bound on the quantity CG(k), in Problem 1. In particular,
Theorem 1 yields the following.

Corollary 1. Let G be a graph on n = |V | vertices and
maximum degree ∆G ≥ 3. Suppose that k = ∆G − s, for
some s ∈ {0, 1, . . . ,∆G − 3}. Then it holds Ck(G) ≤ n(s+2)

2 .

Proof. Consider the defective-coloring game DCG(G; k, d),
where d = s + 2. From Theorem 1 we know that, when the
players in DCG(G; k, d) adopt the Greedy strategy, the game
reaches a Nash equilibrium in O(log(n)) expected number
of rounds. Let χ be the k-coloring corresponding to a Nash
equilibrium. In such an equilibrium point, all vertices are
happy and the collision number of each vertex v ∈ V is at
most d. Let Gχ be the graph induced by the monochromatic
edges of G under χ. Then CG(χ) equals the number of edges
in Gχ, and the result follows from the degree-sum formula in
Gχ.

V. PROOF OF THEOREM 1

In this section we prove Theorem 1. We fix a starting
assignment of colors to the vertices, and we assume that each
player in DCG(G; k, d) adopts the Greedy strategy. Recall
that we assume that k = ∆G − s and d = s + 2, for some
s ∈ {0, 1, . . . ,∆G−3}. We begin with a result that provides a
lower bound on the probability that a player, who is unhappy
after round a certain round, receives “enough” available colors
in the next round. This will require some additional piece of
notation.

Recall that χt(v) denotes the color chosen by player v after
round t, and that χt(N (v)) is the set of colors chosen by
its neighbors after round t. For each t ≥ 1, let Ht be the
set of happy players after round t, and Ut = V \ Ht the set
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of unhappy players after round t; hence v ∈ Ut means that
CG(v;χt) ≥ d+1. Given v ∈ Ut, let At(v) := [k]\χt(N (v))
be the set of colors available to v after round t; hence, under
the Greedy strategy, player v chooses in the next round a color
uniformly at random from the set At(v). Let pt(v) = 1

|At(v)|
be the probability with which the unhappy player v chooses
a color in the next round. For v ∈ Ht, set At(v) = {χt(v)}
and pt(v) = 1. Similarly, given a vertex v ∈ V , let Ht(v) :=
Ht∩N (v) denote the set of happy neighbors of v after round t,
and let Ft(v) := χt(Ht(v)) be the set of colors chosen by the
happy neighbors of v after round t. Let also Ut(v) = N (v) \
Ht(v) denote the set consisting of the unhappy neighbors of v
after round t. Observe that every color from the set [k]\Ft(v)
has a positive chance of not being chosen by the unhappy
heighbors, and therefore has a positive chance of belonging to
the set At+1(v). Finally, let ft(v) = |Ft(v)|, and observe that,
since happy players do not change their color, the sequence
{ft(v)}t≥1 is non-decreasing. In particular, this implies that
the number of colors available to v after round t+ 1 as well
as after round t+2 is less than or equal to k−ft(v). The next
lemma establishes a lower estimate on the probability that the
number of colors available to player v ∈ Ut after round t+ 1
is at least k−ft(v)

5d−1 .

Lemma 1. For each t ≥ 1 and each v ∈ Ut, it holds

P
(
|At+1(v)| ≥

k − ft(v)

5d−1

)
≥ 1− 1− 1/4d−1

1− 1/5d−1
.

Proof. Let v ∈ Ut be fixed and, for simplicity in notation,
let us set f := ft(v). Since v is unhappy, there are at least
d + 1 vertices u ∈ N (v) such that χt(u) = χt(v). We
now proceed with estimating E(|At+1(v)|) from below; the
proof is then completed by applying Markov’s inequality. As
mentioned already, any color from the set [k] \ Ft(v) has a
positive chance of belonging to At+1(v). In particular, color
i ∈ [k] \ Ft(v) belongs to At+1(v) if it is not chosen by
any neighbor u ∈ Ut(v) for which i ∈ At(u); this happens
with probability

∏
{u∈Ut(v):i∈At(u)}(1 − pt(u)). Therefore,

denoting E := E(|At+1(v)|), the arithmetic-geometric means
inequality implies that

E =
∑

i∈[k]\Ft(v)

∏
{u∈Ut(v):i∈At(u)}

(1− pt(u))

≥ (k − f) ·

 ∏
i∈[k]\Ft(v)

∏
{u∈Ut(v):i∈At(u)}

(1− pt(u))

 1
k−f

≥ (k − f) ·

 ∏
u∈Ut(v)

∏
i∈At(u)

(1− pt(u))

 1
k−f

= (k − f) ·

 ∏
u∈Ut(v)

(
1− 1

|At(u)|

)|At(u)|
 1

k−f

.

Recall that |At(u)| ≥ 2, for every u ∈ Ut(v). Since
the sequence {(1 − 1

m )m}m≥2 is non-decreasing, it holds

(
1− 1

|At(u)|

)|At(u)|
≥

(
1− 1

2

)2
= 1

4 . Summarizing the

above, we have shown that E(|At+1(v)|) ≥ (k−f)·
(
1
4

) |Ut(v)|
k−f .

Now, since k = ∆G−d+2, it holds |Ut(v)| ≤ ∆G−f = k+

d−2−f , and hence we have |Ut(v)|
k−f ≤ d−1. This implies that(

1
4

) |Ut(v)|
k−f ≥

(
1
4

)d−1
and therefore it holds E(|At+1(v)|) ≥

k−f
4d−1 . To finish the proof, let X = k − f − |At+1(v)| and
apply the previous lower bound on E(|At+1(v)|) together
with Markov’s inequality to deduce P

(
|At+1(v)| < k−f

5d−1

)
=

P
(
X > (k − f) · (1− 1

5d−1 )
)
< E(X)

(k−f)·(1− 1

5d−1 )
≤ 1− 1

4d−1

1− 1

5d−1
,

as desired.

The next lemma concerns a lower estimate on the proba-
bility that a player, who is unhappy after round t, becomes
happy after two rounds.

Lemma 2. It holds

P(v ∈ Ht+2 | v ∈ Ut) ≥
(
1

4

)5d−1·(d−1)

·
(
1− 1− 1/4d−1

1− 1/5d−1

)
.

Proof. Let v ∈ Ut. Then, conditional on At+1(v) and v ∈
Ut+1, the probability that player v is happy after round
t + 2 is the average of the probabilities that a fixed color
from At+1(v) is chosen by at most d unhappy neighbors
of v. Now the probability that a fixed color i ∈ At+1(v)
is chosen by at most d players u ∈ Ut+1(v) is greater than
or equal to the probability that color i is not chosen by any
player from Ut+1(v); the latter probability being equal to∏

{u∈Ut+1(v):i∈At+1(u)}(1 − pt+1(u)). Therefore, conditional
on At+1(v) and v ∈ Ut+1, the probability that player v is
happy after round t+ 2 is at least

P :=
1

|At+1(v)|
∑

i∈At+1(v)

∏
{u∈Ut+1(v):i∈At+1(u)}

(1− pt+1(u))

≥

 ∏
i∈At+1(v)

∏
{u∈Ut+1(v):i∈At+1(u)}

(1− pt+1(u))

 1
|At+1(v)|

≥

 ∏
u∈Ut+1(v)

∏
i∈At+1(u)

(1− pt+1(u))

 1
|At+1(v)|

=

 ∏
u∈Ut+1(v)

(
1− 1

|At+1(u)|

)|At+1(u)|
 1

|At+1(v)|

,

where the first estimate follows from the arithmetic-geometric
means inequality. As in the proof of Lemma 1, it holds(
1− 1

|At+1(u)|

)|At+1(u)|
≥ 1

4 , and therefore we conclude that

P ≥
(
1
4

) |Ut+1(v)|
|At+1(v)| . Now observe that |Ut+1(v)| ≤ ∆G −

|Ht+1(v)| = k + d − 2 − |Ht+1(v)| ≤ k + d − 2 − ft(v),
which implies that, conditional on the event that |At+1(v)| ≥
k−ft(v)
5d−1 , it holds |Ut+1(v)|

|At+1(v)| ≤ 5d−1 · k+d−2−ft(v)
k−ft(v)

≤ 5d−1 · (d−
1). Hence, conditional on the event that |At+1(v)| ≥ k−ft(v)

5d−1 ,
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we have P ≥
(
1
4

)5d−1·(d−1)
, and the result follows from

Lemma 1.

We now proceed with the proof of Theorem 1. Given v ∈ V ,
let τv be the first round after which player v is happy and
set τ = maxv τv be the first round after which all players
are happy. We want to establish an upper estimate on E(τ).
Observe that the random variables τv, v ∈ V , are not mutually
independent and therefore our bound on τ will be a worst-
case estimate. To this end, we follow the approach from [14],
and employ ideas from the theory of maximally dependent
random variables. Given a real number µ > 0, let Xµ denote
an exponential random variable of parameter µ, and let cd :=(
1
4

)5d−1·(d−1) ·
(
1− 1−1/4d−1

1−1/5d−1

)
, for d ≥ 2.

Lemma 3. For every v ∈ V , it holds τv ≤st 4 · Xµ, where
µ = − log (1− cd).

Proof. We have to show that P(τv > t) ≤ P(Xµ > t
4 ), for

all t. From Lemma 2 we know that P(τv > t+ 2 | τv > t) =
P(v ∈ Ut+2 | v ∈ Ut) ≤ 1 − cd holds true for every t ≥ 1.
Now note that when t is odd, say t = 2m+ 1, it holds

P(τv > t) ≤
m∏
i=1

P(τv > 2i+ 1 | τv > 2i− 1)

≤ (1− cd)
m ≤ (1− cd)

t/4
= P

(
Xµ >

t

4

)
,

as desired. If t is even, the proof is similar and is left to the
reader. The result follows.

The proof of Theorem 1 is almost complete. Given two
random variables X,Y , we denote the fact that they have the
same distribution by X ∼ Y .

Proof of Theorem 1. From Lemma 3 we know that for every
v ∈ V it holds τv ≤st Zv , where Zv ∼ 4 ·Xµ. Now the fact
that τv ≤st Zv implies (see [15, Theorem 1.A.1]) that there
exist random variables τ̂v, Ẑv such that τ̂v ∼ τv , Ẑv ∼ Zv , and
τ̂v ≤ Ẑv with probability 1; hence maxv τ̂v ≤ maxv Ẑv with
probability 1. Since τ ∼ maxv τ̂v , it follows that τ ≤st 4 ·M ,
where M is the maximum of n exponential random variables,
say {Xv

µ}v∈V , of parameter µ, and thus E(τ) ≤ 4 · E(M).
It is therefore enough to upper bound E(M). To this end, we
borrow ideas from [16]. Observe that for every real number a
it holds M ≤ a+

∑
v max{Xv

µ − a, 0}; hence it holds

E(M) ≤ a+
∑
v

E(max{Xv
µ − a, 0})

= a+ n

∫ ∞

a

(1− F (x)) dx ,

where F (·) is the distribution function of Xv
µ. Now consider

the function h(a) = a+n
∫∞
a

(1−F (x)) dx, defined for real a,
and notice that h(·) attains its minimum at an := F−1(1− 1

n ).
Since F (x) = 1− eµx, we deduce that

E(M) ≤ an + n

∫ ∞

an

e−µxdx =
1

µ
(1 + log(n)) ,

as desired. Finally, the main result from [17] implies that
Var(M) ≤ n · Var(Xµ) =

n
µ2 . The result follows upon letting

T = 4 ·M .

VI. NUMERICAL EVALUATION

To evaluate the operation and performance of the proposed
strategy in terms of the resulting number of collisions at the
Nash equilibrium and the required number of rounds until
the convergence, as a function of the parameter s, different
scenarios have been randomly generated and considered, using
the Erdős–Rényi random graph model. Specifically, in the
following, different numbers of vertices n are examined, while
each edge is included in the corresponding graphs with a
probability p = 0.5. The evaluation results have been averaged
over 300 different random graph realizations.

Fig. 1a demonstrates the convergence of the greedy strat-
egy in randomly generated graphs with n = 20 vertices
and maximum degree ∆G = 13 for different values of
s ∈ {0, 1, . . . , 10}. At this point, it should be noted that the
maximum degree of all generated graphs considered in this
simulation setup was predetermined and set equal to ∆G = 13,
which is an average maximum degree of graphs with n = 20
and p = 0.5, in order to yield the same range of values of s
and enable the proper averaging of the obtained results. On the
left vertical axis of Fig. 1a, the total number of collisions at
the Nash equilibrium is depicted, while the number of rounds
until the game reaches a Nash equilibrium is depicted on the
right vertical axis. Based on the proposed strategy, as the value
of s increases, the number of available colors k - calculated
as k = ∆G − s - decreases, whereas the vertices’ threshold
of acceptable collisions d between them and their neighbors
- defined as d = s+ 2 - increases. As a result of the former,
an increase in the value of s yields a higher total number
of collisions. On the contrary, an increase in the value of s
results in a lower number of rounds, as the vertices’ threshold
of acceptable collisions d is looser.

Considering the same simulation setup with Fig. 1a, in
Fig. 1b, we investigate the statistics of the resulting number
of collisions per vertex under the different values of s. Given
a value of s, e.g., s = 0, the illustrated boxplot depicts the
distribution of the number of collisions per vertex that results
from the averaging of the randomly generated graphs. The
red horizontal line inside the box represents the mean number
of collisions per vertex, the lines at the borders of the box
characterize the lower and upper quartiles, while the lines
outside the box denote the min and max number of collisions
per vertex of the graph. Therefore, it appears that given a fixed
s, the distribution of the number of collisions per vertex is
quite uniform among the different vertices. On the other hand,
considering different values of s, Fig. 1b reveals the increase in
mean number of collisions per vertex as s increases, validating
the outcome of Fig. 1a with respect to the total number of
collisions of the whole graph. At this point, it is remarkable
that our experiments suggest that, under the greedy strategy,
the number of collisions per vertex at a Nash equilibrium is
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Fig. 1: Greedy strategy evaluation under randomly generated Erdős–Rényi graphs with probability 0.5.

much less than the bound provided in Corollary 1, which is a
worst-case estimate.

In Fig. 1c, we perform a scalability analysis for an increas-
ing number of vertices, while considering s = 0, which is
the case that requires the maximum number of rounds until
the convergence of the greedy strategy. Apparently, both the
number of collisions (left vertical axis) and the number of
rounds (right vertical axis) increase as the number of vertices
increases. Nevertheless, even when considering n = 200,
the required number of rounds until the Nash equilibrium is
reached does not exceed the number of t = 10 rounds, con-
firming in this way numerically Theorem 1, and the ultimate
purpose of this work.

VII. CONCLUSION AND FUTURE WORK

This paper investigates the problem of assigning a finite set
of resources, over the nodes of an interdependent network,
so that the number of interdependent nodes receiving the
same resource is minimized. We propose a game-theoretic
modeling which results in a distributed randomized algorithm
that converges, in a logarithmic number of rounds, to a Nash
equilibrium of the game which, in turn, gives rise to a defective
coloring of the underlying graph. Our findings are additionally
supported with numerical simulations and evaluations. Several
questions remain to be further investigated. Indicatively we
highlight that the investigation and exploration of the tightness
of the crude bound, provided by Corollary 1, on the number
of collisions at a Nash equilibrium, is of high research and
practical importance.

The present work lays the ground, from a theoretical
perspective, for the application of our randomized algorithm
to actual interdependent networked systems. A particularly
interesting problem that has recently attracted the attention
of the research community and that falls in the range of
defective coloring games is the mitigation of the radar and
communication frequency overlapping in integrated sensing
and communication wireless networks, and we expect that we
will report on this matter in the near future.
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