
An Incentivization Mechanism for Green
Computing Continuum of Delay-Tolerant Tasks

Maria Diamanti∗, Eirini Eleni Tsiropoulou†, and Symeon Papavassiliou∗

{mdiamanti@netmode.ntua.gr, eirini@unm.edu, papavass@mail.ntua.gr}
∗ School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece

† Dept. of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA

Abstract—Capitalizing on the different available computing
options across the network, the concept of computing continuum
has recently emerged to efficiently manage the exaggerated
computation demands of the numerous Internet-of-Things (IoT)
users and applications. Nevertheless, the edge computing’s attrac-
tiveness to the users, in terms of its reduced incurred time and
energy overhead, acts as an impediment in the realization of the
envisioned computing continuum. In this paper, recognizing the
potential of forwarding delay-tolerant tasks to upper computing
layers, we design an incentivization-based mechanism for the
offloading users, aiming to shift their preference from the edge
to the upper fog computing layer. The corresponding mechanism
comprises two stages, in which different models of Contract
Theory are adopted. In the first stage, a users-to-edge server
contract is formulated to determine the optimal amount of each
user’s initially offloaded task at the edge that is allowed to be
further forwarded to the fog, based on the user’s delay tolerance.
Subsequently, an edge-to-fog server contract is formulated to
account for the edge server’s tradeoff between the local execution
and transmission overheads, deriving the most beneficial amount
of the users’ tasks that ultimately reaches the fog. The overall
mechanism is evaluated via modeling and simulation regarding
its operation and efficiency under different scenarios.

Index Terms—Computing Continuum, Delay-Tolerant Com-
puting, Contract Theory, Adverse Selection, Moral Hazard.

I. INTRODUCTION

The ubiquity of intelligence that is required for the operation
of an Internet-of-Things (IoT) environment has provoked the
increase of computationally intensive user applications. To
facilitate the computationally constrained user devices, while
at the same time reducing the computation time and energy
overheads, the concept of computation task offloading at
the edge has become extremely popular. Nevertheless, the
overexploitation of the edge servers will gradually lead to their
performance degradation and increased energy consumption.
This practically shifts the overall computational burden from
the user devices to the finite-capacity edge servers. To alle-
viate the traffic and ameliorate the overall system’s energy
efficiency, a heterogeneous multi-layer computing architecture
is envisioned, in which servers from different computing layers
(e.g., edge, fog and cloud) across the network, cooperate with
each other, realizing the concept of computing continuum [1].

This research work was supported by the Hellenic Foundation for Research
and Innovation (H.F.R.I.) under the “1st Call for H.F.R.I. Research Projects to
support Faculty members and Researchers and the procurement of high-cost
research equipment grant” (Project Number: HFRI-FM17-2436).

Indeed, the diversity that characterizes the offloaded tasks in
terms of their intensity and delay (in)sensitivity creates a solid
ground for the exploitation of the different computing options
within the computing continuum. An appropriate candidate
that can leverage this concept and its merits is the delay-
tolerant tasks, which can be further offloaded from the edge at
the fog - situated anywhere between the network edge and the
cloud [2] - or even the cloud, without violating the Quality-
of-Service (QoS) requirements of the user application. Nev-
ertheless, the edge computing’s appealing attributes related to
its proximity to the users (e.g., reduced incurred transmission
cost), along with the users’ selfish behavior, typically acting
as strict utility and personal satisfaction maximizers, come
against the cooperative principle that the computing continuum
seeks to cultivate among the different computing layers.

In this paper, we aim to exactly fill this gap, by designing
and proposing an incentivization-based mechanism, which de-
termines the amount of each user’s initially offloaded task at an
edge server that can be further forwarded for computation at a
fog server, based on the user’s delay tolerance. The mechanism
includes two stages, in which appropriate contracts following
the principles of Contract Theory [3] are designed to capture
the users-to-edge server and edge-to-fog server relationships,
respectively, realizing a delay-tolerant computing paradigm.
The ultimate goal of our work and proposed mechanism is
to promote the computing continuum and thus, enhance the
resource utilization efficiency across the network.

A. Related Work

There exist some works in the literature that introduce
the cooperation between different computing layers, such as
edge-fog, edge-cloud or fog-cloud, and deal with different
resource allocation problems. For instance, in [4], the authors
suggest the migration of frequently invoked tasks from the
cloud to the edge in order to minimize the response time.
In [5], the cooperation among different fog servers, as well as
the cooperation between the fog and the cloud is considered
for the execution of computationally- intensive and delay-
sensitive services. Following a similar cooperation approach
among different distributed edge/fog and cloud servers, the
problem of application partitioning and placement is studied
in [6], to minimize the execution time and energy consumption
of resource-hungry applications. However, the aforementioned

3538

IC
C

 2
02

2
- I

EE
E

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
m

un
ic

at
io

ns
 |

97
8-

1-
53

86
-8

34
7-

7/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

C
45

85
5.

20
22

.9
83

87
52

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on January 20,2023 at 11:13:54 UTC from IEEE Xplore. Restrictions apply.

works scrutinize the prospect of computation offloading under
delay-sensitive tasks, when a single computing layer struggles
to meet the specific QoS prerequisites. On the contrary, our
objective is to promote the usage of the whole spectrum of
computing continuum under delay-tolerant tasks, as a means
of better resource and energy utilization across the network.

Further improving the overall available computing resource
utilization efficiency, by shifting the users’ preference to
upper computing layers - when the offloaded tasks’ delay
tolerance allows for - calls for the creation and provisioning of
appropriate incentives. In this context, Contract Theory [3] has
been widely adopted and employed under different settings and
applications. Recent efforts pertaining to the incentives behind
computation offloading can be found in [7], [8]. In the former,
the cooperation between potential offloading request nodes and
offloading nodes under a Heterogeneous Cloud Radio Access
Network (H-CRAN) setting is studied, whereas in the latter, a
hierarchical computation offloading framework is developed.
Based on this hierarchical framework, the edge computing
operator seeks to incentivize potential temporary edge nodes
to take over the computation offloading of the users. Another
interesting approach, different from the computation offloading
domain, but tailored to the delayed traffic offloading in cellular
networks, is presented in [9]. This work suggests that the users
capitalize on their delay and price sensitivity and forward their
traffic through the available Delay Tolerant Networks (DTNs)
or WiFi networks, in exchange for reduced service cost.

B. Contributions & Outline

Despite the popularity that computation offloading has
gained over the past years, the problem of incentives to-
wards a green computing continuum under delay-tolerant
task execution remains notably unexplored. In this paper, our
objective is to design and propose an incentivization mecha-
nism that promotes the users-to-edge server and edge-to-fog
server cooperation, towards better utilizing the computational
resources across the network and hence, increasing the overall
system’s efficiency. The ultimate purpose of the mechanism
is to determine the amount of offloaded tasks by the users
at the edge server that can be further forwarded to the fog
for processing, based on the users’/tasks’ delay tolerance and
computational intensity.

In particular, a two-stage incentivization mechanism is
proposed based on Contract Theory. In the first stage, a
contract between the users and the edge server is designed
to solve the Adverse Selection problem, according to which
each user, having private information about its offloaded task’s
delay tolerance and intensity, autonomously selects the most
appropriate amount of task that can be forwarded to the fog
in exchange for some service discount. In the second stage,
a contract between the edge and fog servers is formulated to
solve the Moral Hazard problem, according to which the edge
server scrutinizes the tradeoff between the local execution and
the transmission energy overhead of the tasks that are allowed
to be offloaded at the fog. The outcome of the second stage is
the most beneficial amount of tasks for both the users and the

edge server that reaches the fog. Indicative simulation results
of the two contract-theoretic stages are provided, demonstrat-
ing the main characteristics of the designed contracts.

The remainder of this paper is organized as follows. Section
II presents the system model and the contract bundles and
utilities related to the contracts of the two stages. Section III
introduces the formulation of the Adverse selection problem
and the users-to-edge server contract, whereas in Section IV
the formulation of the Moral Hazard and the edge-to-fog
server contract is provided. Finally, Section V presents the
performance evaluation and Section VI concludes the paper.

II. FRAMEWORK & SYSTEM MODEL

A computing continuum environment is considered, con-
sisting of a set of users N = {1, . . . , |N |}, a single edge
server and a single fog server. Each user n has a computing
application An = (Bn, Cn, ϕn, Tn), where Bn [Bytes] denotes
the total input bytes, Cn [CPU cycles] is the number of CPU
cycles required for the application’s execution referred to as
”task” in the following, ϕn [CPU cycles/Byte] indicates the
application’s intensity such that Cn = ϕnBn and Tn [msec]
is the application’s/task’s completion time requirement that
characterizes its level of delay tolerance. We assume that each
user n communicates with the edge server, which is in close
proximity to the users, and offloads the task Cn for remote
computation. Then, the fog server that is considered to lie
between the edge and cloud/core network [2], serves - among
others - the purpose of computation alleviation of the edge. As
a result, assuming that a task Cn can be arbitrarily partitioned
into subsets of any size, part of the tasks that have been
initially offloaded at the edge, can be further forwarded and
processed at the fog.

A. Users-to-Edge Server Contract Bundle & Utilities

Each user communicating with the edge server is charac-
terized by a type, which captures the tradeoff between its
application’s delay-tolerance and intensity levels and is defined
as θn = w1

Tn

max{Tn,∀n∈N} + w2
ϕn

max{ϕn,∀n∈N} , θn ∈ (0, 1],
where w1, w2 ∈ R+ are appropriate weight factors, such that
w1 + w2 = 1. According to its type, each user provides its
effort to the edge server, i.e., the percentage of the task Cn
that can be forwarded and processed at the fog. By denoting as
cn [CPU cycles] the amount of the task that can be offloaded
at the fog, the user’s n effort to the edge server is defined
as pn = cn

Cn
, pn ∈ [0, 1]. Subsequently, the edge server offers

to the user n a reward rn, rn ∈ [0, 1] (e.g., in the form of
a monetary discount), to account for the user’s intention to
participate in the computing continuum. Considering that the
reward can be drawn from the edge server’s energy savings,
which are proportional to the user’s effort pn, we model the
user’s n reward as rn =

√
θnpn. Hence, a higher user type

indicates a user that has offloaded a more delay-tolerant task
compared to the other users, and thus, can provide a higher
effort to the edge server, by allowing a higher percentage of its
task to be offloaded at the fog. Obviously, a higher user effort
yields a higher reward offered by the edge server back to the

3539Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on January 20,2023 at 11:13:54 UTC from IEEE Xplore. Restrictions apply.

user. Accordingly, a user’s contract comprise the amount of
offloaded task that will be further processed at the fog and the
corresponding reward.

Following this discussion, each user’s n utility function,
capturing its satisfaction from participating in the contract and
the green computing continuum, is defined as follows:

Un,e(pn) = θne(rn)− κpn, (1)

where e(rn) is the user’s evaluation function of reward, which
is strictly increasing and concave with respect to rn, and κ ∈
R+ represents each user’s unit cost of provided effort to the
edge server. In this paper, we assume e(rn) =

√
rn,∀n ∈ N .

On the other hand, the edge server’s utility from each user’s
n participation in the contract is Ue,n = pn − ξrn. Thus, the
function of its overall expected utility is written as follows:

Ue(pn) =
∑

∀n∈N

[λn(pn − ξrn)], (2)

where λn, λn ∈ [0, 1] is the probability of user n of being of
type θn as estimated by the edge server that is unaware of the
actual users’ types, for which it holds that

∑
∀n∈N λn = 1,

and ξ ∈ R+ is the edge server’s unit cost of offered rewards
to the users. Also, pn is the vector of users’ efforts. Without
loss of generality and for simplicity in the representation, we
assume that the user types can take values from a discrete set
of types, while the equivalent contract’s formulation under a
continuous user-type space follows our work in [10].

B. Edge-to-Fog Server Contract Bundle & Utilities

After the completion of the first-stage contract, the edge
server derives the total bytes that can be potentially transmitted
to the fog as De =

∑
∀n∈N

pnCn

ϕn
[Bytes], by knowing each

user’s effort pn. The purpose of the second contract for the
edge server is to determine the most beneficial amount of
bytes de from the total De that strikes a good balance between
local execution, backhaul transmission overhead and available
incentives from the fog. As a result, we model the edge server’s
effort ae at the fog as the percentage of De bytes that are
ultimately transmitted to the fog, i.e., ae = de

De
, ae ∈ [0, 1].

Nevertheless, due to the constrained backhaul, there may occur
incorrect transmissions and hence, the actual performance that
is perceived by the fog server is a noisy signal of the edge
server’s effort. We denote as qe = ae + ϵ the edge server’s
performance to the fog, where ϵ ∼ N(0, σ2) is the normally
distributed error between the effort and the performance with
zero mean and variance σ2. By not knowing the edge server’s
actual effort ae, the fog server offers a compensation, which
includes both a fixed te and a performance-related se reward so
as to be as fair as possible. The overall compensation offered
to the edge server is we = te + seqe, we ∈ [0, 1] and can be
either a monetary or a communications’-related reward.

Due to the constrained backhaul, we consider that the edge
server exhibits a Constant Absolute Risk Averse (CARA)
behavior as its compensation from the fog increases. Thus,
the edge server’s utility function is given by:

Ue,f (we, ae) = −e−η[we−ψ(ae)]), (3)

where η ∈ R+ is the edge server’s coefficient of risk aversion,
a high value of which dictates the more conservative behavior
of the edge server towards providing its effort. Also, ψ(ae) is
the edge server’s cost of effort defined as ψ(ae) = 1

2Ca
2
e, with

C ∈ R+ denoting its unit cost of effort.
In contrast to the edge server, the fog server is considered

as risk neutral and the function of its expected utility is:

Uf (we, ae) = E[qe − we] = (1− se)ae − te, (4)

where E[·] is the expectation operator.

III. USERS-TO-EDGE SERVER CONTRACT BASED ON
ADVERSE SELECTION PROBLEM

A. Contract Design under Incomplete Information

Although that the edge server is unaware of the users’ types
in the considered realistic case, it should at least guarantee
that the designed contracts bear specific properties in order
for the users to participate depending on their type. A contract
agreement between the users and the edge server is termed as
feasible if the following two conditions hold true.
(i) Individual Rationality (IR): Each user’s utility yields a non-
negative value, i.e., Un,e(pn) = θne(rn)− κpn ≥ 0,∀n ∈ N .
(ii) Incentive Compatibility (IC): Each user selects the contract
bundle that best fits its type, i.e., θne(rn)−κpn ≥ θne(rn′)−
κpn′ ,∀n, n′ ∈ N,n ̸= n′.

Additionally, the three conditions listed in Propositions 1-3
must hold true to conclude to a feasible contract.

Proposition 1. For any feasible contract, the following must
hold: rn > rn′ ⇐⇒ θn > θn′ and rn = rn′ ⇐⇒ θn = θn′ .

Proof. To prove the first part of Proposition 1, i.e., rn >
rn′ ⇐⇒ θn > θn′ , we add the following two IC con-
ditions by parts: θne(rn) − κpn ≥ θne(rn′) − κpn′ and
θn′e(rn′) − κpn′ ≥ θn′e(rn) − κpn, and by factorization we
get (θn − θn′)[e(rn) − e(rn′)] ≥ 0. Given that θn > θn′ and
e(rn) is a strictly increasing function of rn, it is concluded that
rn > rn′ . On the other hand, given that rn > rn′ and hence,
e(rn) > e(rn′), we conclude that θn > θn′ . By using a similar
procedure and argumentation, the second part of Proposition
1, i.e., rn = rn′ ⇐⇒ θn = θn′ , can also be proven.

Proposition 2. A higher-type user, i.e., θ1 < · · · < θn < · · · <
θ|N |, will receive a greater reward from the edge server, i.e.,
r1 < · · · < rn < · · · < r|N |, and will provide a higher effort,
i.e., p1 < · · · < pn < · · · < p|N |.

Proof. The proof stems intuitively from Proposition 1.

Proposition 3. A higher-type user, i.e., θ1 < · · · < θn < · · · <
θ|N |, will receive a higher utility, i.e., U1,e < · · · < Un,e <
· · · < U|N |,e to be properly incentivized by the edge server.

Proof. Given two users n, n′ ∈ N, n ̸= n′ of types θn > θn′

and the IC condition, we get θne(rn) − κpn ≥ θne(rn′) −
κpn′ > θn′e(rn′) − κpn′ , which results in Un,e > Un′,e.
Hence, following the monotonicity of user types, the proof
can be inductively concluded.

3540Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on January 20,2023 at 11:13:54 UTC from IEEE Xplore. Restrictions apply.

Based on the above analysis, the edge server formulates and
solves the optimization problem that maximizes its personal
utility, while satisfying the aforementioned conditions that
guarantee the users’ participation in the contract. The outcome
of this optimization problem is the set of optimal contract
bundles (r∗n, p

∗
n),∀n ∈ N , each of them tailored to each user

type θn. The edge server announces the available contract
bundles to each user and each user autonomously selects the
bundle that best fits its private information. The corresponding
optimization problem solved by the edge server is written as:

max
(rn,pn)∀n∈N

Ue =
∑

∀n∈N

[λn(pn − ξrn)] (5a)

s.t. θne(rn)− κpn ≥ 0,∀n ∈ N (5b)
θne(rn)− κpn ≥ θne(rn′)− κpn′ ,∀n, n′ ∈ N,n ̸= n′ (5c)

0 ≤ r1 < · · · < rn < · · · < r|N |. (5d)

The optimization problem in Eq. (5a)-(5d) is non-convex
and to obtain a tractable solution we reduce its IR and IC
constraints, described earlier at the beginning of section III-A.
First, given that θn > θ1 and the IC condition, we get
θne(rn)− κpn ≥ θne(r1)− κp1 > θ1e(r1)− κp1 ≥ 0, which
means that if the IR constraint of the lowest user type θ1 is
met, then the IR constraints of all other user types will be au-
tomatically satisfied. This reduces Eq. (5b) to Eq. (6b), below.
Next, to reduce the IC constraints, we consider the Downward
(DIC) and Upward (UIC) IC conditions between the users n
and n′, with n′ ∈ {1, . . . , n− 1} and n′ ∈ {n+ 1, . . . , |N |},
respectively. Then, Propositions 4-5 hold true.

Proposition 4. All the DIC conditions can be reduced to the
local DIC conditions between the users n, n− 1,∀n ∈ N .

Proof. We consider three adjacent user types, i.e., θn−1 <
θn < θn+1. By combining θn+1 > θn and the IC condition
θne(rn) − κpn ≥ θne(rn−1) − κpn−1 we get θn+1[e(rn) −
e(rn−1)] > θn[e(rn)− e(rn−1)] ≥ κpn− κpn−1. By utilizing
this property, we get θn+1e(rn+1) − κpn+1 ≥ θn+1e(rn) −
κpn ≥ θn+1e(rn−1)− κpn−1 ≥ · · · ≥ θn+1e(r1)− κp1. The
latter can be extended and hold for user types θn−1 and θn.
Hence, if the local DIC conditions between users n, n−1 hold,
then all DIC conditions are satisfied.

Proposition 5. All the UIC conditions can be reduced to the
local DIC conditions between the users n, n− 1,∀n ∈ N .

Proof. Following a similar procedure with the proof of Propo-
sition 4, we can conclude that all UIC conditions are reduced
to the local UIC conditions between the users n, n+1, ∀n ∈ N
or n−1, n,∀n ∈ N , equivalently, while the latter can be easily
implied by the local DIC condition.

Based on the above analysis and constraints reduction, the
optimization problem in Eq. (5a)-(5d) can be rewritten as in
Eq. (6a)-(6d). It should be, also, noted that in the reformulated
problem, the IR and IC conditions are considered as equalities
by the edge server so as to obtain the maximum benefit from
the users. Finally, it is noted that the problem in Eq. (6a)-(6d)
is convex and can be solved by applying the Karush-Kuhn

Tucker (KKT) conditions, resulting in the optimal contract
bundle vectors (r∗n,p

∗
n).

max
(rn,pn)∀n∈N

Ue =
∑

∀n∈N

[λn(pn − ξrn)] (6a)

s.t. θ1e(r1)− κp1 = 0 (6b)
θne(rn)− κpn = θne(rn−1)− κpn−1,∀n ∈ N (6c)

0 ≤ r1 < · · · < rn < · · · < r|N |. (6d)

B. Contract Design under Complete Information

In the ideal case that the edge server is aware about the
users’ types, it seeks to fully exploit their effort and maximize
its personal utility, by marginally ensuring their participation in
contract. Hence, the edge server solves the following problem:

max
(rn,pn)

pn − ξrn, ∀n ∈ N (7a)

s.t. θne(rn)− κpn = 0. (7b)

The solution to this linear programming problem can be easily
found to be equal to (r∗n, p

∗
n) = ((θn2ξκ)

2,
θ2n

2ξκ2), ∀n ∈ N .

IV. EDGE-TO-FOG SERVER CONTRACT BASED ON MORAL
HAZARD PROBLEM

A. Contract Design under Incomplete Information

In the practical case that the fog server has no guarantees
about the edge server’s effort, its purpose is to offer to the
edge server the appropriate compensation that maximizes its
personal utility, while at the same time satisfying the edge
server’s IR and IC conditions, as defined earlier in Section
III-A. Thus, the fog server’s problem is formulated as follows:

max
(te,se,ae)

Uf = (1− se)ae − te (8a)

s.t. E[−e−η[we−ψ(ae)])] ≥ Ue,f (w̄e, ae = 0) (8b)

ae ∈ argmax
ae

E[−e−η[we−ψ(ae)])], (8c)

where Ue,f (w̄e, ae = 0) is the edge server’s minimum accept-
able utility when exerting zero effort, while Eq. (8b) and Eq.
(8c) represent the IR and IC conditions, respectively.

Elaborating more on the edge server’s utility function we
get E[−e−η[we−ψ(ae)])] = −e−η(te+seae− 1

2Ca
2
e)E[e−ηseϵ].

Proposition 6. Given a normal random variable ϵ ∼ N(0, σ2)

and a constant γ ∈ R+, then it holds that E[eγϵ] = e
γ2σ2

2 .

Proof. Given that f(ϵ) = e−ϵ2/2σ2

σ
√
2π

is the probability density

function of ϵ, we have E[eγϵ] =
∫ +∞
−∞ eγϵf(ϵ)dϵ = e

γ2σ2

2 ,

since 1
σ
√
2π

∫ +∞
−∞ e

−(ϵ−γσ2)2

2σ2 dϵ = 1, as the area under a normal
distribution with mean γσ2 and variance σ2.

Following Proposition 6 and letting that γ = −ηse, the
edge server’s utility is equal to E[−e−η[we−ψ(ae)])] =

−e−η(te+seae− 1
2Ca

2
e)e

η2s2eσ2

2 = −e−ηŵ(ae), where ŵ(ae) is the
edge server’s certainty equivalent compensation [3] defined as:

ŵ(ae) = te + seae −
1

2
Ca2e −

η

2
s2eσ

2. (9)

3541Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on January 20,2023 at 11:13:54 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

(d) (e) (f)
Fig. 1: Evaluation of users-to-edge server contract under different comparative scenarios.

The exponential form of the edge server’s expected utility
function, enables the reformulation of the optimization prob-
lem in Eq. (8a)-(8c) with respect to the edge server’s certainty
equivalent compensation ŵ(ae) as follows:

max
(te,se,ae)

Uf = (1− se)ae − te (10a)

s.t. ŵ(ae) ≥ w̄e (10b)
ae ∈ argmax

ae

ŵ(ae), (10c)

where w̄e is the edge server’s minimum acceptable compen-
sation when exerting zero effort.

By calculating the first order derivative of Eq. (10c) and
setting it equal to zero, we obtain a∗e =

se
C . Then, substituting

to the certainty equivalent compensation ŵ(ae) in Eq. (9) and
considering the constraint in Eq. (10b) as equality, since the
fog server seeks to make the most of the edge server’s effort,
the optimization problem in Eq. (10a)-(10c) reduces to a two-
variable linear program. The solution of this linear program
can be easily found to be t∗e = w̄e − 1−ηCσ2

2c(1+ηCσ2)2 and s∗e =
1

1+ηCσ2 . Hence, the solution of the edge-to-fog server contract

is (t∗e, s
∗
e, a

∗
e) = (w̄e − 1−ηCσ2

2C(1+ηCσ2)2 ,
1

1+ηCσ2 ,
se
C).

V. EVALUATION & RESULTS

In this section, we enclose a numerical evaluation of both
the users-to-edge and the edge-to-fog server contracts, which
is obtained via modeling and simulation. In our evaluation, we
consider |N | = 10 users, communicating with the edge server,
with application characteristics randomly generated such that
Bn ∈ [1, 5] MBytes, ϕn ∈ [500, 2000] CPU cycles/Byte and
Tn ∈ [500, 2000] msec, ∀n ∈ N [8]. Considering the users-to-
edge server contract, the users’ and edge server’s cost of effort
and reward, respectively, are set as κ = 0.9 and ξ = 0.8, while
we assume that the edge server estimates the occurrence of

different user types based on the uniform distribution, such that
λn = 1

|N | ,∀n ∈ N . Regarding the edge-to-fog server contract,
we set σ2 = 0.1 and w̄e = 0, while different values of the
edge server’s cost of effort C ∈ [1000, 2000] and coefficient
of risk aversion η ∈ [0.1, 0.2] are scrutinized in the sequel.

In Fig. 1, we perform a comprehensive evaluation of the
users-to-edge contract, accounting for different comparative
scenarios. In particular, Fig. 1a-1d presents the performance
of the proposed users-to-edge contract under the realistic case
of incomplete information, compared against the ideal case
of complete information availability, as described in Section
III-B, and a ”uniform contract” approach, in which the edge
server is unaware of the user types and offers them a uniform
and user type-agnostic reward defined as rn = 0.5pn,∀n ∈ N .
In Fig. 1a-1d, the horizontal axis represents the users sorted
in ascending order with respect to their types, while the
vertical axes depict the values of the users’ efforts, rewards and
utilities, as well as the edge server’s utility Ue,n attained by
each user’s participation in the contract. All graphs in Fig. 1a-
1d verify the monotonic behavior of the contracts, according
to which a user of higher type provides a higher effort to
the edge server, and hence, is rewarded more, yielding higher
utilities for both the users and the edge server. Evidently, in the
complete information case, the users agree to exert a higher
effort in exchange for a quite equal reward to the incomplete
information case. As a result, each user’s utility is equal to
zero, while the edge server achieves a significantly higher
utility per user in this ideal complete information availability
case. Considering the uniform contract case, the results show
that the users are not adequately distinguished with respect
to their types, resulting in quite similar amounts of efforts
and rewards for all users, limiting in this way the potential of
higher types to promote the green computing continuum.

3542Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on January 20,2023 at 11:13:54 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

Fig. 2: Evaluation of edge-to-fog server contract.

Continuing the evaluation of the incomplete information
contract, in Fig. 1e, we confirm the incentive compatibility
of the obtained contract bundles. Indicatively, the users of
index 3, 5 and 7 are selected and their utility values are
scrutinized over all contract bundles offered by the edge server,
as indicated in the horizontal axis by the user index. Indeed,
the utility of the users 3, 5 and 7 is maximized when selecting
the contract bundle designed for their specific type. Finally,
Fig. 1f illustrates the sum users’ effort contracted under the
incomplete information case, considering different values of
the weight w1 (and hence, w2) in the formula of the user
type. Specifically, in this evaluation scenario we assume three
cases, in which different percentages of the existing users are
characterized by either remarkably high delay tolerance or
task intensity. Apparently, for low values of the weight w1,
where the users are mainly distinguished based on their task’s
intensity, the sum users’ effort is higher in the ”20% Delay
- 80% Intensity” case, where 80% of the user applications
have high task intensity. The opposite holds true for high
values of w1, leading to higher sum efforts for the ”80%
Delay - 20% Intensity” case that 80% of the user applications
are characterized by increased delay tolerance. Intuitively, the
graph of the ”50% Delay - 50% Intensity” case lies in between
the other two cases, while in all three cases we observe a slight
increase in the sum users’ effort around w1 ∈ [0.4, 0.6], where
the impact of both the delay tolerance and intensity is taken
almost equally into account in the formation of the user types.

In Fig. 2a-2c, we study the performance of the edge-to-fog
server contract under different values of the edge server’s cost
of effort C and coefficient of risk aversion η. Specifically, in
Fig. 2a-2c, the x and y axes contain the different values of
the edge server’s cost of effort and risk aversion, respectively,
while the vertical z axes depict the values of the edge server’s
effort and fixed and variable reward, as well as the fog server’s
utility. Obviously, for low values of both C and η, the edge
server provides a higher effort (indicated by the light yellow
color) and thus, is rewarded more by the fog server, increasing
in this way the fog server’s utility. On the other hand, high
values of both C and η yield lower values of all metrics
(indicated by the deep blue color). At this point, it should
be reminded that in the edge-to-fog server contract, the edge
server’s utility is always set equal to zero due to w̄e = 0.

VI. CONCLUSION AND FUTURE WORK

In this paper, the paradigm of green computing contin-
uum was exploited, by designing an incentivization-based
mechanism that shifts the preference of the users of delay-
tolerant tasks from the prevailing edge to the fog computing
layer. The devised incentivization mechanism included two
sequential stages, in which respective users-to-edge and edge-
to-fog server contracts were formulated based on Contract
Theory to capture their in-between relationships. Indicative
numerical results were presented to verify the effective opera-
tion of the proposed mechanism. Our future work focuses on
extending this model, by accounting for both the underlying
communications and computing resource allocation needs.

REFERENCES

[1] D. Rosendo, P. Silva, M. Simonin, A. Costan, and G. Antoniu, “E2clab:
Exploring the computing continuum through repeatable, replicable and
reproducible edge-to-cloud experiments,” in 2020 IEEE International
Conference on Cluster Computing (CLUSTER), 2020, pp. 176–186.

[2] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A taxonomy,
survey and future directions,” in Internet of Everything: Algorithms,
Methodologies, Technologies and Perspectives, B. Di Martino, K.-C.
Li, L. T. Yang, and A. Esposito, Eds. Singapore: Springer Singapore,
2018, pp. 103–130.

[3] P. Bolton and M. Dewatripont, Contract Theory. Cambridge, MA,
USA: MIT Press, 2005.

[4] B. Nour, S. Mastorakis, and A. Mtibaa, “Whispering: Joint service
offloading and computation reuse in cloud-edge networks,” in ICC 2021
- IEEE International Conference on Communications, 2021, pp. 1–6.

[5] M. Mukherjee, S. Kumar, Q. Zhang, R. Matam, C. X. Mavromoustakis,
Y. Lv, and G. Mastorakis, “Task data offloading and resource allocation
in fog computing with multi-task delay guarantee,” IEEE Access, vol. 7,
pp. 152 911–152 918, 2019.

[6] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, “An application
placement technique for concurrent iot applications in edge and fog
computing environments,” IEEE Transactions on Mobile Computing,
vol. 20, no. 4, pp. 1298–1311, 2021.

[7] B. Zhang, L. Wang, and Z. Han, “Contracts for joint downlink and
uplink traffic offloading with asymmetric information,” IEEE Journal on
Selected Areas in Communications, vol. 38, no. 4, pp. 723–735, 2020.

[8] C. Su, F. Ye, T. Liu, Y. Tian, and Z. Han, “Computation offloading in
hierarchical multi-access edge computing based on contract theory and
bayesian matching game,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 11, pp. 13 686–13 701, 2020.

[9] Y. Li, J. Zhang, X. Gan, L. Fu, H. Yu, and X. Wang, “A contract-based
incentive mechanism for delayed traffic offloading in cellular networks,”
IEEE Trans. Wireless Comm., vol. 15, no. 8, pp. 5314–5327, 2016.

[10] M. Diamanti, E. E. Tsiropoulou, and S. Papavassiliou, “Resource or-
chestration in uav-assisted noma wireless networks: A labor economics
perspective,” in ICC 2021 - IEEE International Conference on Commu-
nications, 2021, pp. 1–6.

3543Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on January 20,2023 at 11:13:54 UTC from IEEE Xplore. Restrictions apply.

