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Abstract—In this paper, we consider a competitive aerial
computation offloading environment, where two edge resource
operators provide computing services on a time-slot basis to
multiple users, via Unmanned Aerial Vehicles (UAVs), each
bearing a mounted edge server. The aim of each UAV is to selfishly
maximize the difference between its personal and the opponent
UAV’s utility, by competitively allocating its energy resources to
the different users in the system. The problem is formulated as a
Generalized Colonel Blotto (GCB) game, where the UAVs allocate
their resources across a number of battlefields, i.e., the users, as
competing players, seeking to win the battlefield by increasing
the difference of their in-between allocated resources and thus,
experienced utility. The overall framework is complemented by a
Reinforcement Learning (RL)-empowered algorithm to account
for the energy efficient scheduling of the UAVs’ overall available
energy in the different time slots, where the GCB game is
realized. The performance evaluation of the proposed framework
is achieved via modeling and simulation. The obtained numerical
results demonstrate the operation of the proposed GCB game,
under different levels of competitiveness between the UAVs,
and assess the effectiveness and efficiency of the proposed RL
algorithm against different comparative scenarios.

Index Terms—Unmanned Aerial Vehicles, Edge Computing,
Colonel Blotto Game, Competition Modeling, Energy Efficiency.

I. INTRODUCTION

By steadily consolidating the architecture concept of Multi-
Access Edge Computing (MEC) in Next Generation (NextG)
wireless networks, an increasing number of business entities
will distribute and deploy MEC servers in different service
areas, competing for the mobile users therein. Consequently,
an environment of multifaceted competition will be created,
where competition will not only originate from the user side,
striving to share a common pool of computing resources, but
also from the edge resource owners/operators that pursue their
personal profit maximization. Economic models that capture
the competitive interactions among business entities/operators
and their impact at the end users have been widely explored
and developed regarding different business sectors (e.g., Coca-
Cola and Pepsi) [1], but are yet to be applied and tested in
the field of wireless communications and computing.

This research work was supported by the Hellenic Foundation for Research
and Innovation (H.F.R.I.) under the “1st Call for H.F.R.I. Research Projects to
support Faculty members and Researchers and the procurement of high-cost
research equipment grant” (Project Number: HFRI-FM17-2436).

In this paper, motivated by the research gap related to the
problem of competitive resource allocation for aerial compu-
tation offloading in NextG MEC systems, we scrutinize the
application of a Generalized Colonel Blotto (GCB) game [2]
between two edge resource operators that compete with each
other in selfishly maximizing the difference between their
personal and the opponent’s utility. Each operator deploys an
Unmanned Aerial Vehicle (UAV), bearing a mounted MEC
server, to provide computing services to the users in a geo-
graphical area, by properly allocating its available energy, and
thus, computing power, to the multiple users per time slot, via
the Colonel Blotto game. The framework is complemented by
a Reinforcement Learning (RL) algorithm targeting the UAVs’
overall available energy scheduling over a time horizon.

A. Related Work & Motivation

There exists a handful of research works that account for the
business motives and the profit maximization seeking behavior
of the different edge resource operators, during the computing
resource allocation. In [3], a two-stage multi-server multi-user
game is proposed, where the servers competitively determine
the computing service’s price, based on which the users’
computation offloading decision follows via a non-cooperative
game between them. A similar problem is addressed in [4], ex-
cept that a third party (auctioneer) coordinates the introduced
double auction mechanism, i.e., price setting and user-to-
server matching. Following a diametrically opposite approach,
the works in [5], [6] consider non-competitive environments
and pursue the edge resource providers’ profit maximization
through the overall market’s profit increase. The latter is
achieved by designing multi-stage game-theoretic incentive
mechanisms that result in mutually beneficial points for all
the involved parties. Thus, the literature so far has mainly
focused on the pure edge resource operators’ profit maxi-
mization, by either competing or cooperating with each other,
under different settings and formulations. To the best of the
authors’ knowledge, there does not exist works that consider
the selfish and greedy behavior of an edge resource operator
trying to maximize the difference between its personal and the
opponents’ utility, and strengthen its competitive position.

A two-player game-theoretic model that targets at exactly
maximizing the difference between the two players’ utilities
is the Colonel Blotto game [7]. In this game, the players978-1-6654-3540-6/22 © 2022 IEEE
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allocate their resources across a number of battlefields. The
relative number of battlefields won, i.e., times that the allo-
cated resources are more than the opponent’s, determines each
player’s utility. Owing to its win-lose outcome, the Colonel
Blotto game is one of the most appropriate candidate methods
to solve problems related to jamming attacks in wireless
networks. In [8], the problem of combating jamming in slow
fading channels between a jammer and a defender, i.e., Access
Point, across a number of battlefields, i.e., vulnerable users,
is treated via the Colonel Blotto game, by determining the
optimal power control strategy against all possible jammer
power ranges. In [9], the Colonel Blotto game is utilized
for secure wireless power transfer in aerial MEC networks,
while other applications such as internet security, security in
transportation systems, and rumor spread control in social
networks are discussed and evaluated in [10]. The application
of Colonel Blotto game in competitive resource management
is studied in [11], where the dynamic spectrum allocation
to users by different competing Network Service Providers
(NSPs) is addressed. Nevertheless, the theory of the typical
Colonel Blotto game in [7] that is followed by all aforemen-
tioned works, i.e., [8]–[11], results in mixed strategy solutions
that are not practical for real-life applications. For this reason,
generalizations of the Colonel Blotto game can be derived to
conclude to pure Nash Equilibrium (NE) strategies, e.g., [2],
but are yet to be applied and tested in real-life applications.

B. Contributions & Outline

In this paper, we address the research gap related to the com-
petitive resource allocation for aerial computation offloading
in NextG MEC networks, between two greedy edge resource
operators, via the adoption of GCB game. The operators em-
ploy UAVs of fixed energy availability to provide computing
services to the users of a geographic area over a time horizon.
The main contributions of the paper are summarized as:

1) A competitive aerial computation offloading environment
is considered, where two UAVs of different operators,
selfishly allocate their available energy (and thus their
computing power) to the multiple existing users in the
area (battlefields) on a time-slot basis, with the aim to
maximize the difference between their personal and the
opponent’s utility, via a GCB game.

2) The overall available energy of each UAV is scheduled
in the different time slots of the considered time horizon
via an RL algorithm, targeting at the maximization of the
ratio between the corresponding UAV’s achieved utility
that stems from the GCB game and the actually consumed
energy at the given time slot.

3) A unified framework is designed, where the UAVs’ en-
ergy allocation to the users via the GCB game is itera-
tively optimized, while an RL-based energy scheduling
procedure in the specific time slot is realized. Detailed
numerical results demonstrate the operation and effec-
tiveness of the proposed framework.

The remainder of this paper is organized as follows. Section
II presents the system model and the overall framework’s

operation. Section III introduces the competitive energy and
thus, computing power, resource allocation via the GCB game.
Section IV describes the RL-based energy scheduling over
the time horizon. Section V regards the overall framework’s
performance evaluation. Section VI concludes the paper.

II. SYSTEM MODEL & OVERALL FRAMEWORK

We consider a competitive aerial computation offloading en-
vironment, consisting of a set of users N = {1, . . . , n, . . . , N}
and two competing serving UAVs i and j. The UAVs bear
mounted MEC servers and offer computing services to the
users for a time horizon H, by hovering at their position.
The time horizon H is equally divided in T time slots, and
the user tasks’ offloading and processing by the UAVs is
performed on a per time slot basis. At each time slot t, each
user n generates a number of computation tasks atn according
to some generalized process. Each user’s n generated tasks
atn enter a queue in a First-In-First-Out (FIFO) mode at the
node, awaiting for their offloading and processing by the
UAVs i, j, along with a number of qtn computation tasks that
potentially pre-exist in the queue from the previous time slots.
The mean data size and data processing intensity of each
user’s n computation tasks are independently and identically
distributed at each time slot t with mean values dn [Bytes]
and ϕn [CPU cycles/Byte], accordingly.

The UAVs i, j are characterized by an energy availability
Etot

m [J], ∀m = {i, j}, which should be scheduled for the user
tasks’ processing over the time horizon H. At each time slot t,
each UAV determines the specific energy level Et

m = Et,C
m +

Et,H
m [J] to be scheduled for facilitating the processing energy

consumption Et,C
m of the users’ computation tasks existing

in their queues and the UAV’s hovering energy consumption
Et,H

m , where 0 ≤ Et
m ≤ Etot

m −
∑t−1

k=1 E
k
m. Subsequently, the

scheduled energy levels Et,C
m in the time slot t are shared

among the N users, after a competitive allocation procedure
takes place between the two UAVs in the form of a GCB game.
The outcome of the GCB game is the energy levels Et,C

n,m

allocated to each user n by each UAV m = {i, j} at time slot
t regarding the user tasks’ processing. We denote the UAVs’
computing capability as fm [CPU cycles/sec], and assume that
it is sufficient for processing in parallel the tasks. Given the
determined energy level Et,C

n,m, the number of the user’s n
computation tasks wt

n,m that are ultimately processed the UAV
m = {i, j} can be derived from the following formula:

wt
n,m = ⌊

Et,C
n,m

ηmdnϕnfm
⌋, (1)

where ηm indicates the mounted MEC server’s at each UAV
effective capacitance coefficient.

III. GENERALIZED COLONEL BLOTTO GAME
FORMULATION & SOLUTION

In this section, we study and analyze the GCB game that is
employed to formulate the interaction between the UAVs i, j
during the competitive energy allocation to multiple serving
users at a specific time slot, given the specific time slot’s
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t energy level Et
m,∀m = {i, j}. Then, we determine the

solution of the game that is a pure NE strategy. Please note that
in our proposed approach, the energy level Et

m at each time
slot t for each UAV is determined based on the RL algorithm,
described in detail in Section IV.

A. Generalized Colonel Blotto Game Formulation

The interactions between the two UAVs m = {i, j} re-
garding the competitive allocation of their energy level Et,C

m

among the N users on a time slot t is formulated as a
Generalized Colonel Blotto (GCB) game with N battlefields:
G = {P, {Qt

m}m∈P , {Et,C
m }m∈P ,N , {vtn}Nn=1, {U t

m}m∈P}.
P = {i, j} is the set of players, i.e., the two competing UAVs
and Qt

m = {rtm|
∑N

n=1 r
t
n,m ≤ Et,C

m , rn,m ≥ 0} is each
UAV’s strategy space, where rtn,m is the allocated energy of
UAV m = {i, j} to battlefield n and rtm ∈ Qt

m is the vector
of UAV’s m overall energy allocations. The available energy
of each UAV m for allocation to the battlefields is Et,C

m , while
N = {1, . . . , n, . . . , N} is the set of battlefields corresponding
to the set of users existing in the area. The normalized value
of each battlefield n is defined as

vtn =
atn + qtn∑N
n=1 a

t
n + qtn

, (2)

expressing the percentage of the number of computation tasks
existing in user’s n queue at time slot t, in relation to the total
number of tasks in the system. The payoff ut

n,m that UAV m
receives from battlefield n is defined as:

ut
n,m(rtn,m, rtn,−m, kt) =

vtn

1 + e−kt(rtn,m−rtn,−m)
, (3)

where kt is an approximation parameter that when tending to
infinity yields the typical Colonel Blotto game defined in [7],
while rtn,−m is the energy allocated from the opponent of
UAV m to battlefield n. The overall utility of UAV m at time
slot t is U t

m =
∑N

n=1 u
t
n,m, which is apparently dependent

on the difference between its resources and the opponent’s
resources allocated across battlefields n ∈ N , indicating each
UAV’s aim to maximize its personal utility, while reducing
the opponent’s. The UAVs compete by allocating different
amounts of energy to each battlefield, i.e., user, at a given
time slot. The UAV that invests more resources, i.e., energy,
wins the battlefield. Nevertheless, even the player who loses
experiences a utility, the value of which is determined by the
selection of the approximation parameter kt.

B. Pure-Strategy NE Solution

The pure-strategy NE solution of the considered GCB game
can be derived by solving the following minimax problem:

V t
m ≜ 1− V t

−m ≜ min
rt−m∈Qt

−m

max
rtm∈Qt

m

U t
m(rtm, rt−m, kt), (4)

where V t
m is the value of the GCB constant-sum game for the

player m.

Proposition 1. All strategies of the form
∑N

n=1 r
t
n,m < Et,C

m

are dominated by the strategies
∑N

n=1 r
t
n,m = Et,C

m , i.e., the
UAV m = {i, j} is better off using all of its available energy.

Proof. The proposition is easily proved by contradicting the
assumption that an allocation vector rtm, for which it holds∑N

n=1 r
t
n,m = E

t,C

m < Et,C
m , maximizes U t

m,∀m.

To facilitate the subsequent analysis, we define the dif-
ference between the two UAVs’ allocated energy on each
battlefield n ∈ N at time slot t as ztn = rtn,i − rtn,j , and
the difference between their available energy resources as
Dt = Et,C

i − Et,C
j , thus,

∑N
n=1 z

t
n = Dt.

Without loss of generality, we assume that UAV i has more
available energy than j at time slot t, i.e., Et,C

i > Et,C
j , the

values of the battlefields are sorted in ascending manner, i.e.,
vt1 ≥ · · · ≥ vtN , with one of these inequalities being strict to
avoid the case of all battlefields being identical, and Et,C

i

N <

Et,C
j to eliminate the case that UAV i trivially wins the game.

The latter yields 0 < Dt < (N − 1)Et,C
j .

Theorem 1. A local maximum zt∗ = [zt∗1 , . . . , zt∗N ] of
U t
i (z

t, kt) is a solution to the following equation:

N−1∑
n=1

zt∗n + ztN = Dt, (5)

where

zt∗n =
1

kt
ln [

vtn(1 + e−ktzt
N )2 − 2vtNe−ktzt

N

2vtne
−ktzt

N

+

(1 + e−ktzt
N )

√
vtn(v

t
n(1 + e−ktzt

N )2 − 4vtNe−ktzt
N )

2vtNe−ktzt
N

],

(6)

for n ∈ N − {N} and ztN > 0.

Proof. If zt∗ is a local mazimizer and U t
i is continuously

differentiable, then ∇U t
i (z

t∗, kt) = 0. Considering that ztN =

Dt−
∑N−1

n=1 ztn and after some manipulations, we conclude that
Eq. (5) is the only possible local maximum of U t

i (z
t, kt). Also,

the Hessian matrix ∇2U t
i (z

t∗, kt) must be negative definite.
Taking all the different cases it is proved that this is true only
if ztN > 0.

We define the function fk(z
t
N ) =

∑N−1
n=1 zt∗n + ztN = Dt,

for which the following proposition holds true.

Proposition 2. The function fk(z
t
N ) is strictly convex, whose

minimum occurs at a negative ztN , i.e., zt,min
N < 0.

Proof. The first part of the proposition is proved by calculating
the value of the second order derivative of fk(ztN ) with respect
to ztN , while the second part is proved by observing that
zt,min
N < 0 for the equation df

dzt
N
|zt

N=zt,min
N

= 0 to solve.

We assume that Dt = fk(z
t,min
N ) is the minimum value of

fk(z
t
N ), which is unique since fk(z

t
N ) is strictly convex.

Corollary 1. fk(z
t
N ) = Dt has: a) two solutions if Dt > Dt,

b) one solution if Dt = Dt, or no solution if Dt < Dt.

Thus, for Dt ≥ Dt there exists one or two possible local
maxima for U t

i (z
t, kt) that must lead to a positive solution for
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Fig. 1: Unified framework overview.

zt∗N (from Theorem 1) and satisfy rtn,i ≤ Et,C
i , rtn,j ≤ Et,C

j ⇒
−Et,C

j ≤ ztn = rtn,i − rtn,j ≤ Et,C
i . Thus, we conclude that

for n ∈ N any solution must satisfy 0 < zt∗n ≤ Et,C
i .

Theorem 2. For Dtkt ≥
∑N−1

n=1 ln
2vt

n−vt
N+2

√
vt
n(v

t
n−vt

N )

vt
N

and 1 + e
ktDt

N ≤
√
vtNe

ktDt

2N ek
tDt N

2(N−1) , U t
i (z

t, k) obtains
a unique maximum.

Proof. It can be easily proved that fk(ztN ) is always greater
than its asymptotes, lying in the upper subspace of their
intersection. Assume that zt∗N and zt∗N are the lower and
higher solutions of fk(z

t
N ) = Dt and, hence, ztN > zt∗N ≥

zt,min
N ≥ zt∗N > ztN , where ztN , ztN are the intersection

points of line y = Dt and the right and left asymptotes,
respectively. From Proposition 2, we have that zt,min

N < 0
and for this reason zt∗N cannot be an acceptable maximum.
Studying zt∗N , we can prove that ztN < Et,C

i ⇒ zt∗N < Et,C
i .

But zt∗N must be, also, positive ⇐⇒ the first inequality
of this Theorem holds true. Finally, the resulting zt∗n must
also be lower than Et,C

i . From this condition, we conclude to
1 + e

ktDt

N ≤
√
vtNe

ktDt

2N ek
tDt N

2(N−1) .

Theorem 3. The unique local maxima zt∗ = [zt∗1 , . . . , zt∗N ],
where zt∗N = zt∗N and zt∗n arises from Theorem’s 1 relation for
n ∈ N − {N}, is a unique global maximum of U t

i (z
t, kt)

for Dtkt ≥
∑N−1

n=1 ln
2vt

n−vt
N+2

√
vt
n(v

t
n−vt

N )

vt
N

and 1+ e
ktDt

N ≤√
vtNe

ktDt

2N ek
tDt N

2(N−1) .

Proof. This proof follows same logic as that of Theorem 1.

Based on the preceding analysis, Theorem 4 concludes the
pure-strategy NE of the proposed GCB game.

Theorem 4. For Dtkt ≥
∑N−1

n=1 ln
2vt

n−vt
N+2

√
vt
n(v

t
n−vt

N )

vt
N

and

1 + e
ktDt

N ≤
√
vtNe

ktDt

2N ek
tDt N

2(N−1) the pure-strategy NE for
the GCB game comprises the following allocation vectors:

rt∗j = [rt∗1,j , . . . , r
t∗
N,j ], (7)

rt∗i = rt∗j + [zt∗1 , . . . , zt∗N ], (8)
where zt∗N = zt∗N (positive solution of fk(ztN ) = Dt), and zt∗n ,
for n ∈ N −{N} derives from Eq. (6) and rt∗1,j+ · · ·+rt∗N,j =

Et,C
j .

Proof. Based on the minimax problem in Eq. (4), maximizing
U t
i (r

t
i, r

t
j , k

t) over rti is similar to maximizing U t
i (z

t, kt) over
zt = rti − rtj . Theorem 3 proved that the utility function has
a unique maxima. Therefore, rt∗i = rt∗j + zt∗. By substituting
rt∗i , the utility function has a constant value. Consequently, rt∗j
consists of all the strategies in Qt

j and, hence, the pure-strategy
NE of the GCB is as defined in (7)-(8).

By obtaining each UAV’s m = {i, j} optimal strategies
rt∗m, i.e., allocated energy to each battlefield/user from the
scheduled energy Et,C

m in slot t, then, the number of each
user’s computation tasks to be processed derives from Eq. (1).

IV. RL-EMPOWERED ENERGY SCHEDULING OVER TIME

In this section, an RL mechanism is introduced to enable
each UAV’s m = {i, j} energy scheduling Et

m in the time slots
t ∈ H in an autonomous and distributed manner. Please be re-
minded that the estimated energy levels Et

m, and hence, Et,C
m ,

are used as input to the GCB game for allocation to the users.
In particular, we employ a gradient ascent RL algorithm and
model the UAVs as stochastic learning automata. The RL algo-
rithm comprises a number of iterations, denoted as ite, during
which each UAV probabilistically selects a specific energy
level to be scheduled in time slot t from a finite set of S energy
levels/actions Lt

m = {ltm,1, . . . , l
t
m,s, . . . , l

t
m,S}. Apparently,

the different available energy levels/actions ltm,s ∈ Lt
m,∀s ∈ S

are functions of the corresponding UAV’s available energy at
time slot t, i.e., Et,avail

m = Etot
m −

∑t−1
k=1 E

k
m. The selection of a

specific energy level Et
m ≡ ltm,s ∈ Lm yields a corresponding

reward Rt
m,s to UAV m of the perceived satisfaction from

scheduling this energy level in the time slot t, defined as

Rt
m,s(ite) =

∑ite
i=1 U

t
m(i)

cEt
m(ite)

. (9)

where c [J−1] is the unit cost of consumed energy. Eq. (9)
captures the tradeoff between the experienced utility stemming
from the GCB game over the past iterations and the invested
energy level, aiming at the system’s energy efficient operation.

The probability of selecting a specific energy level Et
m ≡

ltm,s ∈ Lt
m at the next RL iteration (ite+1) is updated based

on the Linear Reward Inaction (LRI) gradient ascent algorithm
that applies the following probability update rules:

P t
m,s(ite+ 1) = P t

m,s(ite) + b ·Rt
m,s(ite) · (1− P t

m,s(ite)),

if ltm,s(ite+ 1) = ltm,s(ite). (10)

P t
m,s(ite+ 1) = P t

m,s(ite)− b ·Rt
m,s(ite) · P t

m,s(ite),

if ltm,s(ite+ 1) ̸= ltm,s(ite). (11)

Note that 0 < b < 1 is the learning rate parameter that
controls the RL algorithm’s tradeoff between exploration and
exploitation [12]. The UAVs i, j iteratively select energy levels
to schedule in a time slot t, while they learn the most
energy efficient one. The overall RL algorithm converges,
when P t

m,s(ite) → 1,∀m = {i, j}. An overview of the unified
framework, highlighting the operation of both the GCB game
and the RL mechanism, is presented in Fig. 1.
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V. EVALUATION & RESULTS

In this section, we evaluate the performance of the proposed
framework, via modeling and simulation. In our simulation,
we consider two UAVs i, j providing computing services to
a set of N = 10 users over a time horizon of H = 10 sec,
which is equally divided in T = 10 time slots. At each time
slot, each user generates a number of tasks according to a
Poisson process with rate 6 tasks/sec, whose mean data size
and processing intensity are set as d = 1.7 × 109 Bytes and
ϕ = 6.53 × 103 CPU cycles/Byte. The UAV-mounted MEC
server’s characteristics are set as fi = fj = 8 × 1012 CPU
cycles/sec and ηi = ηj = 8× 10−28. The UAVs are equipped
with different initial energy availability, namely Etot

i = 20 J
and Etot

j = 15 J, while their hovering energy consumption is
assumed equal to Et,H

i = Et,H
j = 10−2 J. Throughout our

experiments, we consider the value of the parameter k equal
to the lower bound of its feasible set (Theorem 2), unless
otherwise explicitly stated. Regarding the RL algorithm, we
consider three possible energy levels, corresponding to 50%,
100% and 150% of the share that results if the available
energy is equally divided by the remaining time slots, while
the learning rate of the RL algorithm is set as b = 0.65 and
the unit cost of consumed energy as c = 1 J−1.

A. Evaluation of Generalized Colonel Blotto Game

First, we study the pure operation of the GCB game under
a given time slot, and subsequently, drop the superscript t for
notation simplification purposes. The energy levels chosen by
the UAVs via the RL algorithm are Ei = 2 J and Ej = 1
J, with Ei > Ej . Fig. 2a depicts the allocated energy levels
(left vertical axis) and number of processed computation tasks
(right vertical axis) by the UAVs i, j with respect to each
user, denoted by the user ID index in the horizontal axis. It
should be noted that the user ID index indicates the users
sorted increasing order regarding their corresponding values of
battlefields, i.e., v1 ≤ · · · ≤ vN . UAV i, having more available
energy than UAV j, allocates more energy and, thus, processes
more tasks compared to UAV j, given that all user tasks in the
system bear the same mean data size and processing intensity.
Additionally, it can be easily observed that as the user ID
increases, denoting users of higher computation burden and
battlefields of higher values, then both the allocated energy and
number of processed tasks increase for UAVs i, j, respectively.

Fig. 2b illustrates the utilities obtained by the two UAVs i, j,
when investing their energy resources across each battlefield,
i.e., user. Apparently, the utility values of the two UAVs follow
the exactly opposite trend as the user ID gets higher, with the
utility of UAV i being constantly higher than the one of UAV
j considering all battlefields, i.e., users. Also, it is observed
that although the rate of increase in UAV’s i utility increases
significantly as the user ID gets higher, the rate of decrease
of the UAV’s j utility decreases, which is implied by the fact
that GCB game is a constant-sum game.

Subsequently, in Fig. 3, we study the operation of the GCB
game under different values of the approximation parameter

(a) (b)

Fig. 2: GCB game operation: (a) allocated energy and number
of processed tasks, (b) utility of each UAV.

(a) (b)

Fig. 3: GCB game operation for different values of k: (a)
allocated energy difference between UAVs, (b) UAV’s i utility.

k = {10, 20, 30, 40}, in order to highlight the different compe-
tition levels that the GCB game allows between the competing
UAVs. Specifically, Fig. 3b illustrates the allocated energy
difference zn across all battlefields n ∈ N , which exhibits
an increasing behavior as the user ID increases, considering
all four cases of different values of k. For high user ID indices,
lower values of the parameter k result in higher allocated
energy differences to the users, whereas the opposite holds true
for low user ID indices. The latter behavior is justified by the
constant-sum game property of the GCB game. Last, in Fig.
3b, the utility of UAV i across the different battlefields (i.e.
users) is depicted for different values of k. As k increases and
the game tends to the typical Colonel Blotto, the UAV i that
has more initial resources achieves a higher utility value in all
battlefields/users, while the strictly increasing behavior of the
UAV’s utility as the user ID increases is maintained. The exact
opposite observations and results hold for the UAV’s j utility,
which, however, are omitted due to space limitations. Thus,
higher values of k aggravate the game’s win-lose outcome
and the competition between the UAVs.

B. Evaluation of RL-empowered energy scheduling algorithm

In the following, we study the performance of the RL-
enabled energy scheduling algorithm over the time horizon.
Fig. 3 illustrates the convergence behavior of the action prob-
abilities for UAV i (Fig. 3a) and UAV j (Fig. 3b), revealing
that almost after 10 RL iterations (corresponding to 2.22 secs
in real execution time) the convergence is reached and each
UAV’s energy level to be scheduled in the corresponding time
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(a) (b)

Fig. 4: RL algorithm convergence analysis: (a) UAV’s i action
probabilities, (b) UAV’s j action probabilities.

(a) (b)

Fig. 5: RL algorithm comparative analysis: UAVs’ (a) average
energy sum, (b) ratio of average GCB utility to energy sum.

slot is determined. It is important to mention that UAV i, which
initially owned more energy, ended up with higher energy level
scheduled in the specific time slot, without however wasting
its overall available energy. The latter behavior is motivated by
the designed RL reward function in Eq. (9), which intelligently
controls the tradeoff between ”winning” the GCB game against
the opponent UAV i and saving energy.

The performance of the proposed RL algorithm is com-
pared against three different approaches, namely: a) the ”Max
Energy”, where the higher energy level from the considered
action set of the RL algorithm is chosen at each time slot,
until the UAVs’ energy is fully exhausted, b) the ”Uniform”
distribution of the available energy at the remaining time slots,
and c) the ”Random” selection of the energy level from the
considered action set of the RL algorithm. In Fig. 5a, the
sums of the average consumed energy over the considered
time horizon are presented for both UAVs, verifying that
the proposed RL-empowered algorithm concludes to a more
energy efficient operation point. Complementary to Fig. 5a,
Fig. 5b depicts each UAV’s achieved ratio of the average utility
obtained by the GCB game to the total consumed energy, over
the time horizon. Once again, the numerical results confirm
that the proposed RL algorithm manages to achieve the best
tradeoff between the satisfaction derived from the battlefields
won and the actually consumed energy.

VI. CONCLUSION & FUTURE WORK

In this paper, the competitive energy allocation problem
based on the Generalized Colonel Blotto (GCB) game is
studied, to support the aerial computation offloading of the
users to two competing UAVs that bear mounted MEC servers.
The UAVs, being characterized by some initial level of energy
availability, aims to maximize the difference between their
personal and the opponent UAV’s utility, by competitively
allocating energy resources to the users that play the role
of the battlefields. The allocated energy to the users by the
UAVs is translated into computing power to facilitate their
computing needs for a given time slot. The overall framework
is complemented by an RL algorithm to support the energy
efficient scheduling of the UAVs’ overall available energy in
different time slots, within which the GCB takes place. The
numerical results demonstrate the operational characteristics
of the GCB game and the different levels of competitiveness
allowed between the UAVs, as well as the effectiveness and ef-
ficiency of the proposed RL algorithm in terms of the actually
consumed energy by each UAV. Part of our current and future
work focuses on elaborating on the features of the GCB game
regarding the competitiveness cultivated between the players
and the exploration of a wider range of competitive resource
allocation problems in the field of wireless communications.
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