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Abstract—An effective way to accommodate the computing
demands of Internet-of-Things (IoT) end-user devices without the
intervention of a remote server, is to motivate the collaboration
between them. The latter paradigm, termed as collaborative
Mobile Edge Computing (MEC), allows an end-user device to
act as service provider, by allocating excess computing resources
for the computation of a service requester’s task, in exchange
for adequate economic incentives. In this paper, we introduce a
contract theory-based one-shot auction to model the computing
resource trading between a service requester and the prospective
service providers. Unlike existing works, we aim to account for
the different types of asymmetric information arising during and
after the contracting phase between the trading parties, regarding
the service providers’ willingness to collaborate and their offered
computing power. The service requester derives a set of optimal
economic bids, having statistical knowledge of the providers’
private information, and each service provider autonomously se-
lects the bid and its computing resource allocation that maximize
its utility. The economic bid comprises a two-stage payment to
secure the provider’s truthful collaboration both prior and after
the contractual agreement. The effectiveness of the proposed
model is validated by comparison against benchmark contract
theory models that unilaterally account for the providers’ private
information either prior/during or after the contracting phase.

Index Terms—Collaborative Edge Computing, Computing Re-
source Trading, Contract Theory, One-shot Auction, Pricing.

I. INTRODUCTION

With the paradigm of Mobile Edge Computing (MEC) ma-

turing over the years, more and more diverse applications and

use cases of it arise that however, keep its initial philosophy

of computing resource sharing unchanged. Indeed, the typical

edge cloud architecture has been upgraded by the inclusion of

the different end-user devices within the concept of resource

sharing, giving rise to the so-called collaborative MEC [1].

Specifically, in the context of collaborative MEC, the synergy

among the neighboring - usually resource-constrained - end-

user devices is exploited to execute in a collaborative manner

their resource-hungry computation tasks. Given their workload

within a time interval, some end-user devices may play the role

of computing resource providers, by outsourcing their excess

computation capability to facilitate the potential neighboring

service requesters. The latter, in turn, can opportunistically

utilize the idle resources of the service providers to satisfy

their personal Quality of Service (QoS) requirements, while

This research work was supported by the Hellenic Foundation for Research
and Innovation (H.F.R.I.) under the “1st Call for H.F.R.I. Research Projects to
support Faculty members and Researchers and the procurement of high-cost
research equipment grant” (Project Number: HFRI-FM17-2436).

at the same time improving the computing resource utilization

at the end-user device computing level.

Nevertheless, the driving force for the realization of the col-

laborative MEC paradigm is the delivery of adequate economic

incentives that settle (or even outweigh) the providers’ costs.

As a result, the computing resource sharing and allocation in

collaborative MEC networks is majorly interwoven with the

economic interplay among the computing service requesters

and providers and thus, should be studied market-wisely. Well-

established methods to capture a trading process in general,

and especially in collaborative MEC networks, comprise game

and auction theory models [2]. Another stream of research in

the recent literature is contract theory [3]. The distinguishing

feature of contract theory is the fact that allows the design

of pricing mechanisms that motivate the truthful cooperation

between the trading parties, under the existence of asymmetric

information during and/or after the contracting phase.

In this paper, we aim to design an one-shot auction model

based on contract theory to capture the private information

from the prospective providers’ behalf both during and after

the contracting phase. The service requester will design a set

of bids tailored to the different types of private information of

the providers, while each prospective service provider will be

able to autonomously select both the bid and the computing

resource allocation to the requester that maximize its personal

utility. The bid will comprise a two-stage payment to the

provider to deal with the asymmetry of information at the

various contracting phases.

A. Related Work & Motivation

Collaborative MEC exploits the social relations and inter-

actions among the end-user devices, as well as their physical

Device-to-Device (D2D) communication capability, for the

accomplishment of local events without the intervention of a

remote server. A survey over the specific real-life applications

in Internet-of-Things (IoT) environments in terms of both

collaborative computing and caching is performed in [4], while

the challenging problem of task and network flow scheduling

in IoT networks is formulated and addressed in [5], in order

to minimize the overall application completion time. Apart

from solely considering the application completion latency

variability among the different available collaborative comput-

ing options, the social trust relationships among the deployed

edge nodes are studied in [6], and a reinforcement learning

algorithm is proposed to address the decision making problem
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of the most beneficial collaborative computing option. On

top of the aforementioned aspects, the intriguing problem of

mobility must be jointly taken into account, when collaborative

vehicular edge computing network settings are studied, while

an analytic summary of the latter’s challenges is found in [7].

Placing our focus on the computing resource trading process

between the service requesters and providers in collabora-

tive MEC networks, a handful of research works, e.g., [8]–

[11], exist regarding the proper service pricing that motivates

their truthful cooperation. In [8], conventional optimization

techniques are employed to solve the joint service provider

selection, computing resource allocation, time scheduling and

payment design problem, by assuming complete knowledge of

the requesters’ and providers’ personal information, regarding

their computation task and resource availability, respectively,

among them. In contrast, the asymmetric information case with

respect to the untruthful declaration of the requester’s actual

computing service request is studied in [9] via an auction,

where the requester represents the bidder and the provider is

the seller. Considering a similar setting, the authors in [10]

introduce a double auction mechanism and a Bayes-Nash

equilibrium is reached that determines the optimal auction

price. Further elaborating on the idea of auctions, the work

in [11] introduces an one-shot auction based on contract

theory. The service requester appropriately designs the con-

tract item that comprises the requested computing resource

allocation (i.e., effort) and the offered monetary reward to

the prospective provider, having only statistical knowledge

about the provider’s time availability and cost of effort (i.e.,

provider’s type). Nevertheless, even the work in [11], assumes

the truthful collaboration from the provider’s behalf after

signing the contract, with respect to the contracted effort to

be provided, which is an unrealistic assumption that our work

aims to reduce.

B. Contributions & Outline

Apparently, the overwhelming majority of research works

in the field of computing resource trading in collaborative

MEC networks has unilaterally considered the existence of

asymmetric information between the trading parties, by mod-

eling the private information only during the contracting phase.

As a result, the situation of untrustworthy collaboration after

reaching a contractual agreement remains notably unexplored.

In this paper, we aim to exactly fill this gap and account for the

scenario, where the service provider may neglect to provide

the necessary effort to the requester. The main contributions

of this work are summarized as follows.

• A collaborative MEC network is considered and an

one-shot auction based on contract theory is proposed

to facilitate the computing resource trading between a

service requester and the prospective service providers,

under the problems of asymmetric information during and

after the contracting phase, known as Adverse Selection

and Moral Hazard problems, respectively.

• The service requester aims to derive the optimal bids that

are tailored to the service providers’ private information,

which lies both in their type and provided effort. The

prospective provider autonomously selects the bid and the

computing resource allocation that maximize its utility.

• A two-stage payment to the prospective provider is de-

signed to secure the trustworthy cooperation with the

requester after the contracting phase.

• Detailed numerical results for the pure operational char-

acteristics, as well as for the comparative evaluation of

the proposed trading model against benchmark cases that

unilaterally account for the asymmetry of information, are

obtained via modeling and simulation, to demonstrate the

effectiveness of the proposed model.

The remainder of this paper is organized as follows. Section

II presents the system model and introduces the service pricing

and the requester’s and prospective providers’ utilities, under

the joint Adverse Selection and Moral Hazard problem. In

Section III the problem of computing resource trading is intro-

duced, while the benchmark cases of pure Adverse Selection

and pure Moral Hazard problems are described in Section IV.

Section V regards the performance evaluation of the proposed

trading model, and Section VI concludes the paper.

II. SYSTEM MODEL

We consider a collaborative MEC network, consisting of a

number of end-user devices that can communicate with each

other either via direct D2D transmissions or indirectly via their

common communicating Base Station (BS). Considering a

specific time instance, a subset of the end-user devices denoted

as N = {1, . . . , N} is requesting for the provisioning of a

computing service from the subset of the end-user devices that

play the role of providers, indicated as M = {1, . . . ,M}. The

service requester n ∈ N has a computation task Wn [CPU

cycles] that must be completed within τn seconds to meet the

corresponding application’s QoS prerequisite. A prospective

provider m ∈ M is offered to allocate fn,m [CPU cycles/s],

0 ≤ fn,m ≤ Fm from its total computing capability Fm [CPU

cycles/s] for the execution of the service requester’s n task Wn,

based on its workload at the specific time instance. It should

be noted that in this work, we aim to address the computing

resource trading between a single service requester n and M
prospective service providers of different private information,

while the extension to the multiple-requester multiple-provider

case that accounts for the competition between the different

service requesters, is part of our current work.

We denote as en,m ∈ [0, 1] the provider’s m effort to the

service requester n that is defined as the percentage of its total

computing capability Fm that is allocated to the requester,

i.e., en,m =
fn,m

Fm
. The service provider is characterized by a

probability Tm ∈ [0, 1] of being able to dedicate part of its

computing resources for the subsequent τn seconds (at most),

based on its upcoming workload, as well as a computing

service energy cost that is calculated as kmWnF
2
me2n,m [J],

where km is its device’s effective capacitance coefficient [12].

The overall provider’s m level of willingness for the provi-

sioning of the computing service to the requester n is defined

as θn,m = ( Tm

kmWnF 2
m
)/max{ Tm

kmWnF 2
m
}, θn,m ∈ [0, 1] and is
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termed as the provider’s type. As a result, a high probability

Tm of future service availability and a low service cost

kmWnF
2
m result in higher willingness to serve the requester.

The asymmetry of information in terms of the provider’s

type θn,m during the contracting phase gives rise to the

Adverse Selection problem, while the asymmetry of informa-

tion after signing the contract regarding the provider’s effort

en,m refers to the Moral Hazard problem. The joint Adverse

Selection and Moral Hazard problem is addressed via the

contract theory-based one-shot auction. Apparently, the service

provider that accepts the offered bid and at the same time

yields the higher utility to the requester, wins the auction.

A. Service Pricing Contract

The service requester n offers a bid to the prospective

provider m to motivate the latter to truthfully leverage on

its effort and type, and successfully complete the requester’s

task, respecting the time constraint τn. The bid corresponds

to the service pricing contract intended to the provider, and

comprises a down payment pn,m ∈ R
+ to be paid by the

requester immediately after signing the contract with the

provider, and an installment payment qn,m ∈ [0, 1] paid

after the successful completion of the computing task by the

provider. Apparently, the successful completion of the task is

determined upon its timely execution within the requested time

constraint τn. The rationale behind this two-stage payment

process is to overcome the asymmetry of information after

the contracting phase and secure the successful completion

of the offloaded computation task, by allowing the provider

to make more revenue as its effort, i.e., computing resource

allocation, increases. In the following, the bid offered by a

service requester n to a service provider m is referred to as

contract item and is indicated by the tuple {pn,m, qn,m}.
B. Service Provider’s and Requester’s Utility

We define the prospective service provider’s m utility Un
m

for executing the service requester’s n computation task Wn

as the difference between its gained revenue from signing the

contract {pn,m, qn,m} minus its provided effort, as follows:

Un
m = θn,men,mqn,m + pn,m − 1

2
ce2n,m, (1)

where c ∈ [1, 2] is the service provider’s cost of effort.

The physical interpretation of Eq. (1) is that the higher the

provider’s willingness to share its computing resources and the

higher its effort en,m, then the higher the installment payment

to be offered by the requester n is after the completion of

the task. The provider’s m overall revenue is complemented

by the down payment pn,m and certainly comes with the cost

of the provided effort, where an exponential model is used to

characterize the evaluation of the provider’s cost of effort.

Considering the requester’s behalf, in order to deal with the

asymmetry of information during the contracting phase, the

requester designs a set of contract items {pn,m, qn,m}, ∀m ∈
M that are tailored to different prospective providers’ types.

The goal is to allow the provider m to autonomously select the

contract item that best fits its type θn,m, which is known as

the revelation principle. Without loss of generality, we consider

that the different providers’ types are sorted in ascending order,

i.e., θn,1 ≤ · · · ≤ θn,m ≤ · · · ≤ θn,M . The utility of the

requester n from trading with the provider m is written as:

Um
n = R+ θn,men,m(Q− qn,m)− pn,m. (2)

R ∈ R
+ is the requester’s fixed revenue from offloading the

task Wn that can map to its energy savings, while Q ∈ R
+

represents the revenue that the requester n makes when its

offloaded task is successfully completed, which is achieved

as the provider’s type θn,m and effort en,m increase. Given

that the requester n has statistical knowledge over the different

providers’ types, its total expected utility is written as follows:

Un =
M∑

m=1

λn,m[R+ θn,men,m(Q− qn,m)− pn,m], (3)

where λn,m ∈ [0, 1] is the probability of the provider type

θn,m to occur, such that
∑M

m=1 λn,m = 1.

III. CONTRACT THEORY-BASED COMPUTING RESOURCE

TRADING

In this section, the conditions that need to be satisfied in

order for the different different prospective providers to accept

the contract are introduced, and subsequently, their optimal

contract items under the joint Adverse Selection and Moral

Hazard problem are derived.

Indeed, to participate in the contract, a service provider

m should obtain at least the same utility as in the case of

rejecting the contract of requester n. This condition is termed

as Individual Rationality (IR) and is formally expressed as:

(IR) θn,men,mqn,m + pn,m − 1

2
ce2n,m ≥ Ū . (4)

Ū ∈ [0.5, 1] is the provider’s minimum acceptable utility.

Also, the service requester n must ensure that the provider

m selects the contract item that maximizes its personal utility,

yielding to the Incentive Compatibility (IC) condition. From

the Moral Hazard problem perspective, the provider m must

be able to select the optimal effort e∗n,m to the requester n,

which is formally written as:

(IC.1) max
en,m

θn,men,mqn,m + pn,m − 1

2
ce2n,m. (5)

As a result of solving Eq. (5) with respect to en,m, we

obtain the optimal provider’s m choice of effort, i.e., per-

centage of allocated computing resource, which is equal to

e∗n,m = 1
c θn,mqn,m. Also, considering the problem of Adverse

Selection, the IC condition is translated as the guarantee that

the provider’s m maximum utility is obtained, when choosing

the contract item that best fits its type θn,m, given by:

(IC.2) θn,men,mqn,m + pn,m − 1

2
ce2n,m ≥

θn,me′n,mqn,m′ + pn,m′ − 1

2
c(e′n,m)2, ∀m �= m′,

(6)
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where e′n,m = 1
c θn,mqn,m′ is the provider’s m effort if

selecting the contract item of a provider m′.
Based on the preceding analysis, the following useful propo-

sitions can be derived.

Proposition 1. Given a feasible contract {pn,m, qn,m}, the
following must hold: qn,m > qn,m′ ⇐⇒ θn,m > θn,m′ and
qn,m = qn,m′ ⇐⇒ θn,m = θn,m′ .

Proof. In order to prove: qn,m > qn,m′ ⇐⇒ θn,m > θn,m′ , we

substitute e∗n,m = 1
c θn,mqn,m to Eq. (6) and obtain the follow-

ing two IC.2 conditions: 1
2cθ

2
n,mq2n,m+pn,m ≥ 1

2cθ
2
n,mq2n,m′+

pn,m′ and 1
2cθ

2
n,m′q2n,m′ + pn,m′ ≥ 1

2cθ
2
n,m′q2n,m + pn,m. By

adding these two IC.2 conditions by parts we conclude to

(θ2n,m − θ2n,m′)(q2n,m − q2n,m′) ≥ 0. Given that θn,m > θn,m′

we get qn,m > qn,m′ . Following similar steps, it can be also

proved that qn,m = qn,m′ ⇐⇒ θn,m = θn,m′ holds true.

Proposition 2. A higher-type provider, i.e., θn,1 < · · · <
θn,m < · · · < θn,M , will get higher installment payment, i.e.,
qn,1 < · · · < qn,m < · · · < qn,M , by providing higher effort,
i.e., en,1 < · · · < en,m < · · · < en,M .

Proof. The proof is immediate based on Proposition 1.

Proposition 3. A higher-type provider, i.e., θn,1 < · · · <
θn,m < · · · < θn,M , will achieve greater utility, i.e., Un

1 <
· · · < Un

m < · · · < Un
M to be motivated by the requester n.

Proof. Given the service providers m,m′ ∈ M, m �= m′

of types θn,m > θn,m′ , the simplified IC.2 condition yields:
1
2cθ

2
n,mq2n,m+pn,m ≥ 1

2cθ
2
n,mq2n,m′ +pn,m′ > 1

2cθ
2
n,m′q2n,m′ +

pn,m′ , and hence, Un
m > Un

m′ , concluding the proof.

Consequently, the objective of the service requester n is to

design the optimal contract items {p∗n,m, q∗n,m}, ∀m ∈M that

correspond to the two-stage payment process of the different

service providers’ types, and then, allow the prospective ser-

vice provider m to autonomously select the one contract item

that maximizes its personal utility. The optimization problem

to be solved by the service requester n is written as follows:

max
(pn,m,qn,m)∀m

M∑

m=1

λn,m[R+
1

c
θ2n,mqn,m(Q− qn,m)− pn,m]

(7a)

s.t.
1

2c
θ2n,mq2n,m + pn,m ≥ Ū , ∀m (7b)

1

2c
θ2n,mq2n,m + pn,m ≥ 1

2c
θ2n,mq2n,m′ + pn,m′ , ∀m �= m′

(7c)

0 ≤ qn,1 < · · · < qn,m < · · · < qn,M , (7d)

where Eq. (7a), (7b) and (7c) are the simplified versions of Eq.

(3), (4) and (6), respectively, given the optimal effort e∗n,m that

is implied by IC.1. The problem in Eq. (7a)-(7d) comprises M
IR and M(M − 1) IC.2 conditions and a reduction procedure

can be followed to obtain a tractable solution.

First, it can be proved that the M IR conditions in Eq. (7b)

can be reduced to a single IR condition: 1
2cθ

2
n,1q

2
n,1 + pn,1 =

Ū . Indeed, given that θn,m > θn,1, the IC.2 condition gives:
1
2cθ

2
n,mq2n,m+pn,m ≥ 1

2cθ
2
n,mq2n,1+pn,1 > 1

2cθ
2
n,1q

2
n,1+pn,1 ≥

Ū , which means that the satisfaction of the IR condition of

the lowest provider type θn,1 implies the satisfaction of the

IR conditions of all provider types. The latter can be, also,

considered as equality to maximize the requester’s n utility.

Next, to proceed to the reduction of the M(M − 1) IC.2

conditions, we define the Downward (DIC) and Upward (UIC)

IC.2 conditions between the providers m and m′, with m′ ∈
{1, . . . ,m− 1} and m′ ∈ {m+ 1, . . . ,M}, respectively.

Proposition 4. The DIC conditions can be reduced to the local
DIC conditions between the providers m,m− 1, ∀m ∈M.

Proof. Assume three adjacent provider types, i.e., θn,m−1 <
θn,m < θn,m+1. By combining θn,m+1 > θn,m and the

IC.2 condition 1
2cθ

2
n,mq2n,m + pn,m ≥ 1

2cθ
2
n,mq2n,m−1 +

pn,m−1, we get 1
2cθn,m+1(qn,m − qn,m−1) >

1
2cθn,m(qn,m −

qn,m−1) ≥ pn,m−1 − pn,m. By utilizing this property, we

get 1
2cθn,m+1qn,m+1 + pn,m+1 ≥ 1

2cθn,m+1qn,m + pn,m ≥
1
2cθn,m+1qn,m−1 + pn,m−1 ≥ · · · ≥ 1

2cθn,m+1qn,1 + pn,1.

This outcome is generalized for the provider types θn,m−1

and θn,m. Consequently, the satisfaction of the DIC conditions

between the providers m,m− 1, results in the satisfaction of

all the DIC conditions.

Proposition 5. The UIC conditions can be reduced to the local
DIC conditions between the providers m,m− 1, ∀m ∈M.

Proof. Similar to the proof of Proposition 4, it can be shown

that the UIC conditions are reduced to the local UIC conditions

between the providers m,m + 1, ∀m ∈ M, or equivalently

m− 1,m, suggesting the local DIC conditions.

Concluding the outcome of Propositions 4 and 5, the IC.2

conditions in Eq. (7c) can be substituted by the following M
conditions: 1

2cθ
2
n,mq2n,m + pn,m = 1

2cθ
2
n,mq2n,m−1 + pn,m−1.

After completing the IR and IC.2 constraints reduction pro-

cess, the problem in Eq. (7a)-(7d) is transformed as follows:

max
(pn,m,qn,m)∀m

M∑

m=1

λn,m[R+
1

c
θ2n,mqn,m(Q− qn,m)− pn,m]

(8a)

s.t.
1

2c
θ2n,1q

2
n,1 + pn,1 = Ū (8b)

1

2c
θ2n,mq2n,m + pn,m =

1

2c
θ2n,mq2n,m−1 + pn,m−1, ∀m (8c)

0 ≤ qn,1 < · · · < qn,m < · · · < qn,M . (8d)

The optimal solution (p∗n,q
∗
n) to the problem in Eq. (8a)-

(8d) can be obtained via the application of the Karush-Kuhn

Tucker (KKT) conditions, where pn and qn are the vectors

of the down and installment payments of the different types

of providers, respectively.

IV. BENCHMARK CONTRACT THEORY-BASED TRADING

MODELS

This section introduces two one-shot contract theory-based

auctions that primarily differ from the proposed model in Sec-
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tion III in the fact that they unilaterally deal with the existence

of asymmetric information between the service requester and

the prospective service providers, either during or after the

contracting phase, resulting in pure Adverse Selection and pure

Moral Hazard problems, respectively.

A. Pure Adverse Selection Problem

In this benchmark case, the problem of asymmetric infor-

mation after the contracting phase regarding the provider’s

allocated computing resource to the service requester n is re-

moved, and each prospective provider’s m effort is considered

to be truthfully predetermined as ên,m, proportional to the

provider’s type θn,m. The pure Adverse Selection problem to

be solved by the service requester n includes the IR, IC.2 and

monotonicity conditions, and is given by:

max
(pn,m,qn,m)∀m

M∑

m=1

λn,m[R+ θn,mên,m(Q− qn,m)− pn,m]

(9a)

s.t. θn,mên,mqn,m + pn,m − 1

2
cê2n,m ≥ Ū , ∀m (9b)

θn,mên,mqn,m + pn,m − 1

2
cê2n,m ≥

θn,mên,m′qn,m′ + pn,m′ − 1

2
c(ên,m′)2, ∀m �= m′

(9c)

0 ≤ qn,1 < · · · < qn,m < · · · < qn,M . (9d)

It can be easily found that the optimal solution to the

problem in Eq. (9a)-(9d) for a single provider m is p∗n,m =
Ū + 1

2cê
2
n,m and q∗n,m = 0. Obviously, when the provider’s

effort required to successfully complete the requester’s task has

been truthfully agreed during the contracting phase, then there

is no need to provide a bonus, i.e., an installment payment,

after the completion of the task.

B. Pure Moral Hazard Problem

This benchmark case is supplementary to the one in Section

IV-A, and removes the asymmetry of information during the

contracting phase regarding the provider’s type. The pure

Moral Hazard problem to be solved by the requester n for each

one of the different prospective service providers separately,

includes the IR and IC.1 conditions, and is expressed as:

max
(pn,m,qn,m)

R+
1

c
θ2n,mqn,m(Q− qn,m)− pn,m, ∀m (10a)

s.t.
1

2c
θ2n,1q

2
n,1 + pn,1 ≥ Ū , (10b)

where it is considered that the optimal provider’s effort to the

requester is equal to e∗n,m = 1
c θn,mqn,m, as pointed in the

analysis in Section III.

The optimal solution to this problem, considering a provider

m, is derived as p∗n,m = Ū − 1
2cθ

2
n,mR2 and q∗n,m = R. In

the pure Moral Hazard case, the requester promises to offer

its whole revenue R to the prospective provider upon the

completion of its task to motivate the latter to provide the

most of its effort.

V. EVALUATION & RESULTS

In this section, we evaluate the operational characteristics

of the proposed computing resource trading mechanism in

collaborative MEC networks, and especially, compare its per-

formance against the benchmark cases that are introduced in

Section IV. For demonstration purposes, we consider a service

requester, whose computation task to be offloaded is calculated

as Wn = Bnφn [CPU cycles], where Bn ∈ [1, 2] MBytes

and φn ∈ [20, 40] CPU cycles/Byte. The system comprises

of M = 10 prospective service providers of different types,

whose total computing capabilities and effective capacitance

coefficients are Fm ∈ [1, 2] [CPU cycles/s] and km = 10−27,

respectively. Unless otherwise specified, the contract theory-

related parameters of both the proposed model in Section III

and the benchmark models in Section IV are set as follows:

R = 1, Q = 1, C = 1, Ū = 0.5. Last, the truthfully

predetermined effort of the provider at the pure Adverse

Selection problem is defined as ên,m = θn,m, ∀m ∈ M.

The results presented subsequently have been averaged over

100 different service requester’s computation tasks and service

providers’ contract theory types realizations.

Fig. 1 investigates the operation of the proposed computing

resource trading mechanism under the joint Adverse Selection

and Moral Hazard problem, denoted as ”Proposed”, against

the benchmark cases of ”Pure Adverse Selection” and ”Pure

Moral Hazard”. The horizontal axes in Fig. 1 refer to the

different providers’ types sorted in ascending order, i.e., θ1,1 ≤
· · · ≤ θ1,m ≤ · · · ≤ θ1,10, denoted by an index for notation

simplicity. As a result, the higher the provider’s index, the

higher its type is. First, Fig. 1a depicts the different providers’

effort to the service requester, which exhibits an increasing

trend as the providers’ types increase. Indeed, the more willing

a service provider is, then the more its investment in the col-

laborative MEC system in terms of its effort is. For the chosen

numerical values of the contract theory-related parameters,

i.e., R = 1, Q = 1, C = 1, Ū = 0.5, the two benchmark

cases yield identical providers’ efforts, whereas the proposed

model concludes in slightly lower providers’ efforts, especially

considering high providers’ types. This observation is easily

justified considering the twofold asymmetry of information

that is taken into account that makes the service requester

conservative in offering contract items that motivate higher

providers’ efforts closer to the ones in the benchmark cases.

In Fig. 1b-1c, we place our focus on the installment and

down payments to be paid by the service requester to the

different prospective service providers’. Fig. 1b-1c illustrate

the findings of Section IV with respect to the optimal contract

items in the benchmark cases, which indicate that in the

pure Adverse Selection case that the providers’ efforts are a

priori known, only a down payment is offered that increases

as the providers’ types and efforts increase (Fig. 1c). On

the contrary, in the pure Moral Hazard case that the only

asymmetry lies in the unknown providers’ efforts, the requester

offers an installment payment that is equal to the revenue

R = 1 that is obtained from the successful completion of the
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Fig. 1: Comparative evaluation of the operation characteristics between the proposed model and benchmark cases.

task (Fig. 1b), while the down payment exhibits a decreasing

behavior as the providers’ types increase, indicating a higher

willingness to sign the contract regardless of the economic

incentives to be initially provided (Fig. 1c). Apparently, the

proposed model lies in between the two benchmark cases

regarding both the providers’ installment and down payments.

It is remarkable to notice that as the providers’ types and

efforts increase, their installment payments increase, whereas

their down payments present a slightly decreasing tendency

as a means of balancing the aggregate payments (down and

installment) to the providers’ as their types increase.

In Fig. 1d-1f, we study the providers’ and the requester’s

achieved utilities,as defined in Eq. (1)-(2), as well as the total

system’s social welfare that is defined as the summation of

the both trading parties’ utilities. Fig. 1d shows that in the

two benchmark cases that only one type of asymmetry of

information is considered, the service requester makes the

most of the service providers, by marginally ensuring the

latters’ participation in the contract and marginally satisfying

their minimum acceptable utility value Ū = 0.5. In the

proposed model, the requester seems to slightly overestimate

the providers’ efforts and provide higher overall payments,

resulting in slightly higher utilities to the providers compared

to the benchmark cases, which increase as the providers’ types

and efforts increase. Fig. 1e, also, justifies this behavior with

reference to the requester’s achieved utility at the different

contract theory models. Last, the social welfare metric that is

investigated in Fig. 1f, presents similar performance for the

three different contract theory models, which emphasizes that

the proposed one manages to effectively achieve a balance be-

tween adequate economic incentives and computing resource

allocation, while taking two different types of asymmetric

information into account.

After a comprehensive study of the different contract mod-

els’ operation characteristics, given fixed values of the contract

theory-related parameters, we subsequently investigate the

impact that the different values of the providers’ cost of effort

c ∈ [1, 2] and minimum acceptable utility Ū ∈ [0.5, 1] have on

the requester’s utility at the different contract theory models.

It should be noted that when different values of either the

cost parameter c or the minimum utility Ū are examined, the

rest of the contract theory-related parameters’ values remain

unchanged, as defined at the beginning of this section. The

obtained numerical results are presented in Fig. 2, where the

different values of the two parameters c and Ū are depicted

in the horizontal axes of Fig. 2a and Fig. 2b, respectively.

The vertical axes in Fig. 2 correspond to the requester’s

utility, when the provider m = M with the highest provider

type θn,M is agreed to collaborate with the service requester.

Fig. 2a reveals the decrease in the requester’s utility as the

provider’s cost of effort gets higher. In the pure Adverse

Selection case, the requester’s utility decreases proportionally

to the provider’s cost increase. Apparently, the fact that the

provider’s effort is predetermined is more costly for the service

provider and thus, the service requester compared to the other

contract theory models, at high values of the provider’s cost.

On the other hand, the pure Moral Hazard and the proposed

contract models exhibit a decrease in the rate at which the
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Fig. 2: Evaluation under different values of the providers’ cost and minimum acceptable utility, between the proposed model

and benchmark cases.

requester’s utility decreases, while the difference/gap between

them diminishes for high cost of effort values, given the

generally reduced utility values that the service requester

achieves in the proposed model. Last, considering the results

in Fig. 2b, all considered contract theory models result in

decreased requester’s utility values in a proportional manner

to the increase of the provider’s minimum acceptable utility.

VI. CONCLUSION & FUTURE WORK

In this paper, an one-shot auction based on contract theory is

introduced to facilitate the computing resource trading process

between a service requester and multiple service providers in

a collaborative MEC network. Specifically, with the assistance

of contract theory, the optimal economic incentives to be

provided to the prospective providers are determined, taking

into account the existence of asymmetric information both

during and after the contracting phase. To deal with the asym-

metry of information regarding each provider’s willingness to

cooperate (provider’s type), the service requester designs a set

of contract items that comprise the economic incentives, which

are tailored to each provider’s type. Each service provider is,

then, allowed to autonomously select the contract item and

the computing resource allocation (effort) that maximizes its

personal utility. Furthermore, to address the asymmetry of in-

formation with reference to the prospective provider’s ultimate

effort, the service requester designs and offers a two-stage

payment to be paid prior and after the successful completion

of the offloaded computation task, respectively. Numerical

results complement the theoretical analysis of the proposed

contract model, validating its effectiveness and efficiency to

concurrently capture two different types of private information

under a unified model.

Part of our current and future work focuses on the extension

of the proposed contract theory model via the inclusion

of multiple service requesters that concurrently compete for

the available service providers, by properly adjusting their

offered economic incentives. Therefore, the resulting multiple-

requester multiple-provider system setting suggests the joint

utilization of contract and game theories.
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